Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Trong mỗi bài tập dưới đây, hãy chọn một phương án trong các phương án cho để được khẳng đinh đúng.
Câu 80
Hàm số \(f\left( x \right) = {{{x^3}} \over 3} - {{{x^2}} \over 2} - 6x + {3 \over 4}\)
(A) Đồng biến trên khoảng \(\left( { - 2;3} \right)\)
(B) Nghịch biến trên khoảng \(\left( { - 2;3} \right)\)
(C) Nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)
(D) Đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\)
Lời giải chi tiết:
\(f'\left( x \right) = {x^2} - x - 6\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr
x = 3 \hfill \cr} \right.\)
Từ bbt ta thấy hàm số nghịch biến trên khoảng \(\left( { - 2;3} \right)\).
Chọn (B).
Câu 81
Hàm số \(f\left( x \right) = 6{x^5} - 15{x^4} + 10{x^3} - 22\)
(A) Nghịch biến trên R;
(B) Đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và nghịch biến trên khoảng \(\left( {0; + \infty } \right)\);
(C) Đồng biến trên khoảng R;
(D) Nghịch biến trên khoảng (0;1).
Lời giải chi tiết:
\(\eqalign{
& f'\left( x \right) = 30{x^4} - 60{x^3} + 30{x^2}\cr& = 30{x^2}\left( {{x^2} - 2x + 1} \right) = 30{x^2}{\left( {x - 1} \right)^2} \ge 0 \cr
& f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 1 \hfill \cr} \right. \cr} \)
Hàm số đồng biến trên R.
Chọn C.
Câu 82
Hàm số \(y = \sin x - x\)
(A) Đồng biến trên R.
(B) Đồng biến trên khoảng \(\left( { - \infty ;0} \right)\)
(C) Nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
(D) Nghịch biến trên R.
Lời giải chi tiết:
\(y' = \cos x - 1 \le 0\,\,\,\,\,\forall x \in R\).
Dấu bằng xảy ra khi và chỉ khi \(x = 2k\pi \)
Hàm số nghịch biến trên R.
Chọn D.
Câu 83
Hàm số \(f\left( x \right) = {x^3} - 3{x^2} - 9x + 11\)
(A) Nhận điểm x = -1 làm điểm cực tiểu;
(B) Nhận điểm x = 3 làm điểm cực đại;
(C) Nhận điểm x = 1 làm điểm cực đại;
(D) Nhận điểm x = 3 làm điểm cực tiểu.
Lời giải chi tiết:
\(\eqalign{
& f'\left( x \right) = 3{x^2} - 6x - 9 \cr
& f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = 3 \hfill \cr} \right. \cr} \)
Hàm số đạt cực tiểu tại điểm x = 3.
Chọn D.
Câu 84
Hàm số \(y = {x^4} - 4{x^3} - 5\)
(A) Nhận điểm x = 3 làm điểm cực tiểu.
(B) Nhận điểm x = 0 làm điểm cực đại
(C) Nhận điểm x = 3 làm điểm cực đại
(D) Nhận điểm x = 0 làm điểm cực tiểu.
Lời giải chi tiết:
\(\eqalign{
& y' = 4{x^3} - 12{x^2} = 4{x^2}\left( {x - 3} \right) \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 3 \hfill \cr} \right. \cr} \)
Hàm số đạt cực tiểu tại điểm x = 3.
Chọn A.
Câu 85
Số điểm cực trị của hàm số \(y = {x^4} - 2{x^2} - 3\) là
(A) 0; (B) 1;
(C) 3; (D) 2.
Lời giải chi tiết:
\(\eqalign{
& y' = 4{x^3} - 4x = 4x\left( {{x^2} - 1} \right) \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 1 \hfill \cr
x = - 1 \hfill \cr} \right. \cr} \)
Phương trình \(y' = 0\) có ba nghiệm phân biệt và \(y'\) đổi dấu qua 3 nghiệm đó.
Hàm số có 3 điểm cực trị.
Chọn C.
Câu 86
Số điểm cực trị của hàm số \(y = {{{x^2} - 3x + 6} \over {x - 1}}\) là
(A) 0; (B) 2; (C) 1; (D) 3.
Lời giải chi tiết:
\(y = \frac{{{x^2} - 3x + 6}}{{x - 1}} = x - 2 + \frac{4}{{x - 1}}\)
\(y' = 1 - {4 \over {{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 4 \)
\(\Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr
x = - 1 \hfill \cr} \right.\)
Phương trình \(y' = 0\) có hai nghiệm phân biệt và \(y'\) đổi dấu qua 2 nghiệm đó.
Hàm số có 2 cực trị.
Chọn B.
Câu 87
Hàm số f có đạo hàm là \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Số điểm cực trị của hàm số là
(A) 1; (B) 2;
(C) 0; (D) 3.
Lời giải chi tiết:
Vì \({x^2}{\left( {x + 1} \right)^2} \ge 0\,\,\forall x \in R\) nên f’(x) chỉ đổi dấu khi x qua \({1 \over 2}\)
Hàm số có 1 điểm cực trị.
Chọn A.
Cách giải thích khác:
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Qua điểm x = 0; x= -1 thì f’(x) không đổi dấu nên hai điểm này không là cực trị của hàm số.
Qua điểm x = 1/2 thì f’(x) đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại x = 1/2.
Vậy hàm số có 1 điểm cực trị.
Câu 88
Hàm số \(y = x - \sin 2x + 3\)
(A) Nhận điểm \(x = - {\pi \over 6}\) làm điểm cực tiểu.
(B) Nhận điểm \(x = {\pi \over 2}\) làm điểm cực đại.
(C) Nhận điểm \(x = - {\pi \over 6}\) làm điểm cực đại.
(D) Nhận điểm \(x = - {\pi \over 2}\) làm điểm cực tiểu.
Lời giải chi tiết:
\(y' = 1 - 2\cos 2x;\,\,\,y'' = 4\sin 2x\)
Ta có: \(y'\left( { - {\pi \over 6}} \right) = 0\,\,\,\text{và }\,\,y''\left( { - {\pi \over 6}} \right) < 0\)
Hàm số nhận điểm \(x = - {\pi \over 6}\) làm điểm cực đại.
Ngoài ra tại các điểm \( \pm \frac{\pi }{2}\) thì \(y'\left( { \pm \frac{\pi }{2}} \right) \ne 0\) nên không là điểm cực trị.
Cách khác:
f' (x)=1-2cos2x,f' (-π/6)=0 và đổi dấu từ dương sang âm tại điểm x=-π/6.
Chọn C.
Câu 89
Giá trị lớn nhất của hàm số \(y = - 3\sqrt {1 - x} \) là:
(A) -3; (B) 1
(C) -1 (D) 0
Lời giải chi tiết:
\(\sqrt {1 - x} \ge 0 \Rightarrow - 3\sqrt {1 - x} \le 0 \)
\(\Rightarrow y \le 0,\,\,\forall x \le 1\) và y(1) = 0
Nên \(\mathop {\max }\limits_{x \le 1} y = 0\)
Chọn D
Câu 90
Giá trị nhỏ nhất của hàm số \(y = 3\sin x - 4\cos x\) là:
(A) 3; (B) -5; (C) -4; (D) -3.
Phương pháp giải:
Ta có: \( - \sqrt {{a^2} + {b^2}} \le a\sin x + b\cos x \le \sqrt {{a^2} + {b^2}} \)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}y = 3\sin x - 4\cos x\\ \Rightarrow - \sqrt {{3^2} + {4^2}} \le y \le \sqrt {{3^2} + {4^2}} \\ \Rightarrow - 5 \le y \le 5\\ \Rightarrow \min y = - 5\end{array}\)
Cách 2:
Ta có:
Chọn (B)
Câu 91
Giá trị lớn nhất của hàm số
\(f\left( x \right) = 2{x^3} + 3{x^2} - 12x + 2\) trên đoạn \(\left[ { - 1;2} \right]\) là:
(A) 6; (B) 10;
(C) 15; (D) 11.
Lời giải chi tiết:
\(\eqalign{
& f'\left( x \right) = 6{x^2} + 6x - 12 \cr
& f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 1 \in \left[ { - 1;2} \right] \hfill \cr
x = - 2 \notin \left[ { - 1;2} \right] \hfill \cr} \right. \cr
& f\left( { - 1} \right) = 15;\,f\left( 1 \right) = - 5;\,f\left( 2 \right) = 6 \cr} \)
Vậy \(\mathop {\max }\limits_{x \in \left[ { - 1;2} \right]} f\left( x \right) = 15\)
Chọn C.
Câu 92
Giá trị lớn nhất của hàm số \(f\left( x \right) = \sqrt { - {x^2} - 2x + 3} \) là:
(A) 2; (B) \(\sqrt 2 \)
(C) 0; (D) 3.
Lời giải chi tiết:
TXĐ: \(D = \left[ { - 3;1} \right]\)
\(\eqalign{
& f'\left( x \right) = {{ - 2x - 2} \over {2\sqrt { - {x^2} - 2x + 3} }} \cr&= - {{x + 1} \over {\sqrt { - {x^2} - 2x + 3} }} \cr
& f'\left( 0 \right) \Leftrightarrow x = - 1\cr&f\left( { - 1} \right) = 2,f\left( { - 3} \right) = f\left( 1 \right) = 0 \cr} \)
\(\mathop {\max }\limits_{x \in \left[ { - 3;1} \right]} f\left( x \right) = 2\).
Chọn (A).
Cách khác:
\(\begin{array}{l}
y = \sqrt { - {x^2} - 2x + 3} \\
= \sqrt { - \left( {{x^2} + 2x + 1} \right) + 4} \\
= \sqrt {4 - {{\left( {x + 1} \right)}^2}} \\
\le \sqrt {4 - 0} = 2\\
\Rightarrow y \le 2
\end{array}\)
Câu 93
Gọi (C) là đồ thị của hàm số \(y = {{2{x^2} - 3x + 4} \over {2x + 1}}\)
(A) Đường thẳng x = -1 là tiệm cận đứng của (C).
(B) Đường thẳng x = 2x - 1 là tiệm cận đứng của (C).
(C) Đường thẳng x = x + 1 là tiệm cận đứng của (C).
(D) Đường thẳng x = x - 2 là tiệm cận đứng của (C).
Lời giải chi tiết:
TCĐ: \(x = - \frac{1}{2}\)
Lại có: \(y = x - 2 + {6 \over {2x + 1}}\)
Tiệm cận xiên : y = x- 2.
Chọn (D).
Câu 94
Gọi (C) là đồ thị của hàm số \(y = {{{x^2} + 3} \over {3 + 5x - 2{x^2}}}\)
(A) Đường thẳng x = 1 là tiệm cận đứng của đồ thị (C).
(B) Đường thẳng \(x = - {1 \over 2}\) là tiệm cận đứng của đồ thị (C).
(C) Đường thẳng y = 1 là tiệm cận ngang của đồ thị (C).
(D) Đường thẳng x = -x +1 là tiệm cận xiên của đồ thị (C).
Lời giải chi tiết:
\(3 + 5x - 2{x^2} = 0 \Leftrightarrow \left[ \matrix{
x = - {1 \over 2} \hfill \cr
x = 3 \hfill \cr} \right.\)
Ta thấy \(x = - \frac{1}{2}\) và \(x = 3\) không là nghiệm của tử nên các đường thẳng \(x = - \frac{1}{2}\) và \(x = 3\) đều là TCĐ của đồ thị hàm số.
Chọn (B).
Câu 95
Gọi (C) là đồ thị của hàm số \(y = {{{x^2} + x + 2} \over { - 5{x^2} - 2x + 3}}\)
(A) Đường thẳng x = 2 là tiệm cận đứng của (C).
(B) Đường thẳng y = x -1 là tiệm cận xiên của (C).
(C) Đường thẳng \(y = - {1 \over 5}\) là tiệm cận ngang của (C).
(D) Đường thẳng \(y = - {1 \over 2}\) là tiệm cận ngang của (C).
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to \pm \infty } y = -{1 \over 5}\) .
Tiệm cận ngang \(y = - {1 \over 5}\).
Chọn (C).
Câu 96
Đồ thị của hàm số \(y = x + {1 \over {x - 1}}\)
(A) cắt đường thẳng y = 1 tại hai điểm;
(B) cắt đường thẳng y = 4 tại hai điểm;
(C) Tiếp xúc với đường thẳng y = 0.
(D) Không cắt đường thẳng y = -2.
Lời giải chi tiết:
\(x + {1 \over {x - 1}} = 4 \Leftrightarrow {x^2} - x + 1 = 4x - 4 \)
\(\Leftrightarrow {x^2} - 5x + 5 = 0\,\,\,\left( 1 \right)\)
(1) có hai nghiệm phân biệt nên đồ thị cắt đường thẳng y=4 tại hai điểm phân biệt.
Chọn (B).
Câu 97
Xét phương trình \({x^3} + 3{x^2} = m\)
(A) Với m =5, phương trình đã có ba nghiệm;
(B) Với m = -1, phương trình có hai nghiệm.
(C) Với m =4, phương trình đã có ba nghiệm phân biệt;
(D) Với m =2, phương trình đã có ba nghiệm phân biệt
Lời giải chi tiết:
Vẽ đồ thị hàm số \(y = {x^3} + 3{x^2}\)
\(\eqalign{
& \,\,\,\,y' = 3{x^2} + 6x;\,y' = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = - 2;\,\,y\left( { - 2} \right) = 4 \hfill \cr
x = 0;\,\,\,y\left( 0 \right) = 0 \hfill \cr} \right. \cr} \)
m =2: Phương trình có 3 nghiệm phân biệt.
Chọn (D).
Câu 98
Đồ thị hàm số \(y = {{x - 2} \over {2x + 1}}\)
(A) Nhận điểm \(\left( { - {1 \over 2};{1 \over 2}} \right)\) làm tâm đối xứng.
(B) Nhận điểm \(\left( { - {1 \over 2};2} \right)\) làm tâm đối xứng.
(C) Không có tâm đối xứng.
(D) Nhận điểm \(\left( {{1 \over 2};{1 \over 2}} \right)\) làm tâm đối xứng.
Lời giải chi tiết:
Tiệm cận đứng: \(x = - {1 \over 2}\); Tiệm cận ngang: \(y = {1 \over 2}\)
Giao điểm hai tiệm cận \(I\left( { - {1 \over 2};{1 \over 2}} \right)\) là tâm đối xứng của đồ thị hàm số.
Chọn (A).
Câu 99
Số giao điểm của hai đường cong \(y = {x^3} - {x^2} - 2x + 3\) và \(y = {x^2} - x + 1\) là:
(A) 0; (B) 1; (C) 3; (D) 2.
Lời giải chi tiết:
Hoành độ giao điểm của hai đường cong là nghiệm phương trình:
\(\eqalign{
& \,\,\,\,{x^3} - {x^2} - 2x + 3 = {x^2} - x + 1 \cr
& \Leftrightarrow {x^3} - 2{x^2} - x + 2 = 0\cr& \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x - 2} \right) = 0 \cr
& \Leftrightarrow \left( {x - 1} \right)\left( {x + 1} \right)\left( {x - 2} \right) = 0 \cr&\Leftrightarrow \left[ \matrix{
x = \pm 1 \hfill \cr
x = 2 \hfill \cr} \right. \cr} \)
Chọn (C)
Câu 100
Các đồ thị của hai hàm số \(y = 3 - {1 \over x}\) và \(y = 4{x^2}\) tiếp xúc với nhau tại điểm M có hoành độ là:
(A) x = -1; (B) x = 1; (C) x =2; (D) \(x = {1 \over 2}\)
Lời giải chi tiết:
Ta có:
\(f\left( x \right) = 3 - \frac{1}{x} \Rightarrow f'\left( x \right) = \frac{1}{{{x^2}}}\)
\(g\left( x \right) = 4{x^2} \Rightarrow g'\left( x \right) = 8x\)
Đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với đồ thị hàm số \(y = g\left( x \right)\)
\( \Leftrightarrow \) hoành độ tiếp điểm là nghiệm của hệ \(\left\{ \begin{array}{l}3 - \frac{1}{x} = 4{x^2}\\\frac{1}{{{x^2}}} = 8x\end{array} \right.\)
Ta có:
\(\frac{1}{{{x^2}}} = 8x \Leftrightarrow 1 = 8{x^3}\) \( \Leftrightarrow {x^3} = \frac{1}{8} \Leftrightarrow x = \frac{1}{2}\)
Thay \(x = \frac{1}{2}\) vào phương trình đầu ta được:
\(3 - \frac{1}{{\frac{1}{2}}} = 1 = 4.{\left( {\frac{1}{2}} \right)^2}\) nên hệ trên có nghiệm \(x = \frac{1}{2}\)
Chọn (D).
Unit 10. Lifelong Learning
Chương 5. ĐẠI CƯƠNG VỀ KIM LOẠI
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 12
Bài 37. Vấn đề khai thác ở thế mạnh Tây Nguyên
Đề kiểm tra 45 phút (1 tiết ) – Chương 8 – Hóa học 12