Bài 14 trang 82 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong mỗi trường hợp sau, hãy viết phương trình mặt cầu :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Đi qua ba điểm A(0 ; 8 ; 0), B(4; 6 ; 2), C(0 ; 12 ; 4) và có tâm nằm trên mp(Oyz);

Phương pháp giải:

- Gọi tâm I(0;b;c).

- Lập hệ phương trình ẩn b, c với chú ý IA=IB=IC.

- Giải hệ tìm b, c suy ra phương trình.

Lời giải chi tiết:

Tâm I của mặt cầu nằm trên mp(Oyz) nên \(I\left( {0;b;c} \right)\). Ta tìm b và c để IA = IB = IC. Ta có:

\(\left\{ \matrix{
I{A^2} = I{B^2} \hfill \cr 
I{A^2} = I{C^2} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
{\left( {8 - b} \right)^2} + {c^2} = {4^2} + {\left( {6 - b} \right)^2} + {\left( {2 - c} \right)^2} \hfill \cr 
{\left( {8 - b} \right)^2} + {c^2} = {\left( {12 - b} \right)^2} + {\left( {4 - c} \right)^2} \hfill \cr} \right. \)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
64 - 16b = 16 + 36 - 12b + 4 - 4c\\
64 - 16b = 144 - 24b + 16 - 8c
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
- 4b + 4c = - 8\\
8b + 8c = 96
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
b = 7\\
c = 5
\end{array} \right.
\end{array}\)

Vậy tâm \(I\left( {0;7;5} \right)\) bán kính

R = IA =\(\sqrt {0 + 1 + 25}  = \sqrt {26} \).

Mặt cầu có phương trình \({x^2} + {\left( {y - 7} \right)^2} + {\left( {z - 5} \right)^2} = 26\).

LG b

Có bán kính bằng 2, tiếp xúc với mặt phẳng (Oyz) và có tâm nằm trên tia Ox;

Lời giải chi tiết:

Vì tâm của mặt cầu nằm trên tia Ox và mặt cầu tiếp xúc với mp(Oyz) nên điểm tiếp xúc phải là O, do đó bán kính mặt cầu là R = IO = 2 và \(I\left( {2;0;0} \right)\).

Mặt cầu có phương trình \({\left( {x - 2} \right)^2} + {y^2} + {z^2} = 4\)

LG c

Có tâm I(1 ; 2 ; 3) và tiếp xúc với mp(Oyz).

Lời giải chi tiết:

Vì mặt cầu có tâm \(I\left( {1;2;3} \right)\) và tiếp xúc với mp(Oyz), vậy R = d(I,(Oyz))=1.

Mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved