Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây song song:
LG a
\(2x + ny + 2z + 3 = 0\) và \(mx + 2y - 4z + 7 = 0\).
Phương pháp giải:
Điều kiện để hai mp song song là \(\frac{a}{{a'}} = \frac{b}{{b'}} = \frac{c}{{c'}} \ne \frac{d}{{d'}}\)
Lời giải chi tiết:
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi:
\({2 \over m} = {n \over 2} = {2 \over { - 4}} \ne {3 \over 7} \Leftrightarrow \left\{ \matrix{
m = - 4 \hfill \cr
n = - 1 \hfill \cr} \right.\)
LG b
\(2x + y + mz - 2 = 0\) và \(x + ny + 2z + 8 = 0\).
Lời giải chi tiết:
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi:
\({2 \over 1} = {1 \over n} = {m \over 2} \ne {{ - 2} \over 8} \Leftrightarrow \left\{ \matrix{
m = 4 \hfill \cr
n = {1 \over 2} \hfill \cr} \right.\)