Bài 20 trang 28 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho khối lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\), điểm \(A'\) cách đều ba điểm \(A, B, C\), cạnh bên \(AA'\) tạo với mặt phẳng đáy một góc \(60^0\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Tính thể tích của khối lăng trụ đó.

Lời giải chi tiết:

Gọi \(O\) là tâm của tam giác đều \(ABC\).

Vì \(A’\) cách đều ba đỉnh \(A, B, C\) nên \(A’\) nằm trên trục của \(\Delta ABC\), do đó \(A'O \bot mp\left( {ABC} \right)\)
\(AO\) là hình chiếu của \(AA’\) trên mp \((ABC)\). Do đó \(\widehat {A'AO} = {60^0}\)

Trong tam giác vuông \(A’OA\) ta có: \(\tan {60^0} = {{A'O} \over {AO}}\) \( \Rightarrow A'O = AO.\tan {60^0} \) \(= {2 \over 3}.{{a\sqrt 3 } \over 2}.\sqrt 3  = a\)
Vậy thể tích khối lăng trụ là \(V = B.h = {S_{ABC}}.A'O \) \(= {{{a^2}\sqrt 3 } \over 4}.a = {{{a^3}\sqrt 3 } \over 4}\)

LG b

Chứng minh rằng mặt bên \(BCCB'\) là một hình chữ nhật.

Lời giải chi tiết:

Vì \(BC \bot AO\) và \(BC\bot A'O\)

\( \Rightarrow BC \bot \left( {AOA'} \right) \) \(\Rightarrow BC \bot AA'\) hay \(BC \bot BB'\) .

Vậy \(BCC’B’\) là hình chữ nhật.

LG c

Tính tổng diện tích các mặt bên của hình lăng trụ \(ABC.A'B'C'\) (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).

Lời giải chi tiết:

Gọi \(H\) là trung điểm của \(AB\).

Ta có \(AB \bot \left( {A'HO} \right) \Rightarrow A'H \bot AB\).

Trong tam giác vuông \(A’OH\), ta có:

\(A'{H^2} = A'{O^2} + O{H^2} \) \(= {a^2} + {\left( {{{a\sqrt 3 } \over 6}} \right)^2} = {{13{a^2}} \over {12}} \)

\(\Rightarrow A'H = {{a\sqrt {13} } \over {2\sqrt 3 }}\)
Diện tích hình bình hành \(ABB’A’\) : \({S_{AB B'A'}} = AB.AH = {a^2}{{\sqrt {13} } \over {2\sqrt 3 }}\)
Tương tự \({S_{ACC'A'}} = {{{a^2}\sqrt {13} } \over {2\sqrt 3 }}\)
Diện tích hình chữ nhật \(BCC’B’\) là: \({S_{BCC'B'}} = BB'.BC = AA'.BC \) \(= {{AO} \over {\cos {{60}^0}}}.a = {{2{a^2}\sqrt 3 } \over 3}\)
Vậy diện tích xung quanh hình lăng trụ là:

\({S_{xq}} = 2{S_{AA'B'B}} + {S_{BCC'B'}} \) \(= {{{a^2}\sqrt {13} } \over {\sqrt 3 }} + {{2{a^2}\sqrt 3 } \over 3} \) \(= {{{a^2}\sqrt 3 } \over 3}\left( {\sqrt {13}  + 2} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved