PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 20 trang 60 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có); không giải phương trình, hãy điền vào những chỗ trống (…) sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(2{x^2} - 17x + 1 = 0;\)  \(\Delta  = ...,{x_1} + {x_2} = ...,{x_1}.{x_2} = ...\)

Phương pháp giải:

Sử dụng hệ thức Vi-ét:

Cho phương trình bậc hai \(a{x^2} + bx + c = 0\,(a \ne 0).\) 
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Lưu ý: Ta phải kiểm tra điều kiện có nghiệm của mỗi phương trình \(\left( {\Delta  \ge 0} \right)\) trước khi dùng hệ thức Vi-ét.

Lời giải chi tiết:

\(\Delta  = {b^2} - 4ac = {\left( { - 17} \right)^2} - 4.2.1 = 281 > 0\) 

Phương trình có hai nghiệm \({x_1};{x_2}.\)

\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - \left( { - 17} \right)}}{2} = \dfrac{{17}}{2}\\{x_1} \cdot {x_2} = \dfrac{c}{a} = \dfrac{1}{2}\end{array} \right.\)

LG b

\(5{x^2} - x - 35 = 0;\) \(\Delta  = ...,{x_1} + {x_2} = ...,{x_1}.{x_2} = ...\)

Phương pháp giải:

Sử dụng hệ thức Vi-ét:

Cho phương trình bậc hai \(a{x^2} + bx + c = 0\,(a \ne 0).\) 
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Lưu ý: Ta phải kiểm tra điều kiện có nghiệm của mỗi phương trình \(\left( {\Delta  \ge 0} \right)\) trước khi dùng hệ thức Vi-ét.

Lời giải chi tiết:

\(\Delta  = {b^2} - 4ac \)\(= {\left( { - 1} \right)^2} - 4.5.\left( { - 35} \right) = 701 > 0\)

Phương trình có hai nghiệm \({x_1};{x_2}.\)

\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - \left( { - 1} \right)}}{5} = \dfrac{1}{5}\\{x_1} \cdot {x_2} = \dfrac{c}{a} = \dfrac{{ - 35}}{5} =  - 7\end{array} \right.\)

LG c

\(8{x^2} - x + 1 = 0;\) \(\Delta  = ...,{x_1} + {x_2} = ...,{x_1}.{x_2} = ...\)

Phương pháp giải:

Sử dụng hệ thức Vi-ét:

Cho phương trình bậc hai \(a{x^2} + bx + c = 0\,(a \ne 0).\) 
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Lưu ý: Ta phải kiểm tra điều kiện có nghiệm của mỗi phương trình \(\left( {\Delta  \ge 0} \right)\) trước khi dùng hệ thức Vi-ét.

Lời giải chi tiết:

\(\Delta  = {b^2} - 4ac = {\left( { - 1} \right)^2} - 4.8.1 =  - 31 < 0\)

Phương trình vô nghiệm.

LG d

\({25^2} + 10x + 1 = 0;\)  \(\Delta  = ...,{x_1} + {x_2} = ...,{x_1}.{x_2} = ...\)

Phương pháp giải:

Sử dụng hệ thức Vi-ét:

Cho phương trình bậc hai \(a{x^2} + bx + c = 0\,(a \ne 0).\) 
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Lưu ý: Ta phải kiểm tra điều kiện có nghiệm của mỗi phương trình \(\left( {\Delta  \ge 0} \right)\) trước khi dùng hệ thức Vi-ét.

Lời giải chi tiết:

\(\Delta  = {b^2} - 4ac = {10^2} - 4.25.1 = 0\)

Phương trình có hai nghiệm \({x_1};{x_2}.\)

\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - 10}}{{25}} =  - \dfrac{2}{5}\\{x_1} \cdot {x_2} = \dfrac{c}{a} = \dfrac{1}{{25}}\end{array} \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved