PHẦN GIẢI TÍCH - TOÁN 12

Bài 3 trang 140 sgk giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải các phương trình sau trên tập hợp số phức:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) \({z^4} + {z^2}-6= 0\);

Phương pháp giải:

Phương pháp giải phương trình \(a{z^4} + b{z^2} + c = 0\,\,\left( {a \ne 0} \right)\).

Bước 1: Đặt \({z^2} = t\), đưa về phương trình bậc hai ẩn t.

Bước 2: Giải phương trình bậc hai ẩn t: \(a{t^2} + bt + c = 0\).

Bước 3: Từ nghiệm t, ta giải tìm nghiệm x bằng cách tìm căn bậc hai của t.

Lời giải chi tiết:

Đặt \(t = z^2\) , ta được phương trình \({t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = - 3\end{array} \right.\)

Khi \(t = 2 \Rightarrow {z^2} = 2 \Rightarrow z _{1,2}=  \pm \sqrt 2 \)

Khi \(t =  - 3 \Rightarrow {z^2} =  - 3 \Rightarrow z _{3,4}=  \pm i\sqrt 3 \)

Vậy phương trình có bốn nghiệm là: \(± \sqrt2\) và \(± i\sqrt3\).

LG b

b) \({z^4} + 7{z^2} + 10 = 0\)

Lời giải chi tiết:

Đặt \(t = z^2\) , ta được phương trình \({t^2} + 7t + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 2\\t = - 5\end{array} \right.\)

Khi \(t = -2 \Rightarrow {z^2} =- 2 \Rightarrow z_{1,2} =  \pm i\sqrt 2 \)

Khi \(t =  - 5 \Rightarrow {z^2} =  - 5 \Rightarrow z_{3,4} =  \pm i\sqrt 5 \)

Vậy phương trình có bốn nghiệm là: \(± i\sqrt2\) và \(± i\sqrt5\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved