ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 3 trang 92 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Dãy số \(u_n\) cho bởi: \(u_1= 3\); \(u_{n+1}\)= \( \sqrt{1+u^{2}_{n}}\),\( n ≥ 1\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Viết năm số hạng đầu của dãy số.

Phương pháp giải:

Để viết năm số hạng đầu tiên của dãy số ta tính \(u_n\) lần lượt tại \(n=1;2;3;4\).

Lời giải chi tiết:

Ta có:

\( u_2 = \sqrt {1 + u_1^2} = \sqrt{1+3^2} = \sqrt{10}\)

\(u_3= \sqrt {1 + u_2^2}= \sqrt{1+ (\sqrt{10})^2} = \sqrt{11}\)

\(u_4= \sqrt {1 + u_3^2}= \sqrt{1+(\sqrt{11})^2} = \sqrt{12}\)

\(u_5= \sqrt {1 + u_4^2}= \sqrt{1+(\sqrt{12})^2} = \sqrt{13}\)

Năm số hạng đầu của dãy số là \(u_1=3; u_2=\sqrt{10}; u_3=\sqrt{11};\) \( u_4=\sqrt{12}; u_5=\sqrt{13}\)

LG b

Dự đoán công thức số hạng tổng quát và chứng minh công thức đó bằng phương pháp quy nạp.

Phương pháp giải:

Dựa vào các giá trị \(u_1;u_2;u_3;u_4;u_5\) dự đoán công thức tổng \(u_n\).

Sử dụng phương pháp quy nạp toán học.

Bước 1: Chứng minh đẳng thức đã cho đúng với \(n=1\).

Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 1\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).

Lời giải chi tiết:

Ta có:

\(u_1= 3 = \sqrt9 = \sqrt{1 + 8}\)

\( u_2= \sqrt{10} = \sqrt{2 + 8}\)

\(u_3= \sqrt{11} = \sqrt{3 + 8}\)

\(u_4= \sqrt{12} = \sqrt{4 + 8}\)

\(u_5= \sqrt{13} = \sqrt{5 + 8}\)

...........

Từ trên ta dự đoán \(u_n= \sqrt{n + 8}\), với \(n \in {\mathbb N}^*\)   (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với \(n = 1\), rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với \(n = k ≥ 1\), tức là có  \(u_k = \sqrt{k + 8}\) với \(k ≥ 1\), ta cần chứng minh \(u_{k+1}=\sqrt{(k+1)+8}\)

Theo công thức dãy số, ta có:

\(u_{k+1}=  \sqrt{1+u^{2}_{k}}\) \(=\sqrt{1+(\sqrt{k+8})^{2}}\)

\( = \sqrt {1 + k + 8} \) \(=\sqrt{(k+1)+8}\).

Như vậy công thức (1) đúng với \(n = k + 1\).

Vậy công thức (1) được chứng minh.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved