Dãy số \(u_n\) cho bởi: \(u_1= 3\); \(u_{n+1}\)= \( \sqrt{1+u^{2}_{n}}\),\( n ≥ 1\).
LG a
Viết năm số hạng đầu của dãy số.
Phương pháp giải:
Để viết năm số hạng đầu tiên của dãy số ta tính \(u_n\) lần lượt tại \(n=1;2;3;4\).
Lời giải chi tiết:
Ta có:
\( u_2 = \sqrt {1 + u_1^2} = \sqrt{1+3^2} = \sqrt{10}\)
\(u_3= \sqrt {1 + u_2^2}= \sqrt{1+ (\sqrt{10})^2} = \sqrt{11}\)
\(u_4= \sqrt {1 + u_3^2}= \sqrt{1+(\sqrt{11})^2} = \sqrt{12}\)
\(u_5= \sqrt {1 + u_4^2}= \sqrt{1+(\sqrt{12})^2} = \sqrt{13}\)
Năm số hạng đầu của dãy số là \(u_1=3; u_2=\sqrt{10}; u_3=\sqrt{11};\) \( u_4=\sqrt{12}; u_5=\sqrt{13}\)
LG b
Dự đoán công thức số hạng tổng quát và chứng minh công thức đó bằng phương pháp quy nạp.
Phương pháp giải:
Dựa vào các giá trị \(u_1;u_2;u_3;u_4;u_5\) dự đoán công thức tổng \(u_n\).
Sử dụng phương pháp quy nạp toán học.
Bước 1: Chứng minh đẳng thức đã cho đúng với \(n=1\).
Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 1\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).
Lời giải chi tiết:
Ta có:
\(u_1= 3 = \sqrt9 = \sqrt{1 + 8}\)
\( u_2= \sqrt{10} = \sqrt{2 + 8}\)
\(u_3= \sqrt{11} = \sqrt{3 + 8}\)
\(u_4= \sqrt{12} = \sqrt{4 + 8}\)
\(u_5= \sqrt{13} = \sqrt{5 + 8}\)
...........
Từ trên ta dự đoán \(u_n= \sqrt{n + 8}\), với \(n \in {\mathbb N}^*\) (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với \(n = 1\), rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với \(n = k ≥ 1\), tức là có \(u_k = \sqrt{k + 8}\) với \(k ≥ 1\), ta cần chứng minh \(u_{k+1}=\sqrt{(k+1)+8}\)
Theo công thức dãy số, ta có:
\(u_{k+1}= \sqrt{1+u^{2}_{k}}\) \(=\sqrt{1+(\sqrt{k+8})^{2}}\)
\( = \sqrt {1 + k + 8} \) \(=\sqrt{(k+1)+8}\).
Như vậy công thức (1) đúng với \(n = k + 1\).
Vậy công thức (1) được chứng minh.
Bài 3. Một số vấn đề mang tính chất toàn cầu - Tập bản đồ Địa lí 11
Chủ đề 6: Văn hóa tiêu dùng
Chủ đề 5: Kĩ thuật đánh đầu
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
Chương 6. Hidrocacbon không no
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11