Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho hai đường thẳng
\({d_1}:\left\{ \matrix{
x = 8 + t \hfill \cr
y = 5 + 2t \hfill \cr
z = 8 - t \hfill \cr} \right.\) và \({d_2}:{{3 - x} \over 7} = {{y - 1} \over 2} = {{z - 1} \over 3}\).
LG a
Chứng tỏ rằng hai đường thẳng đó chéo nhau.
Phương pháp giải:
Kiểm tra tích \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{M_2}{M_1}} \ne 0\)
Lời giải chi tiết:
Đường thẳng \({d_1}\) đi qua \({M_1}\left( {8;5;8} \right)\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {1;2; - 1} \right)\).
Đường thẳng \({d_2}\) đi qua \({M_2}\left( {3;1;1} \right)\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 7;2;3} \right)\).
Ta có: \(\overrightarrow {{M_2}{M_1}} = \left( {5;4;7} \right)\,\,;\,\,\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( {8;4;16} \right)\).
Do đó \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{M_2}{M_1}} = 168 \ne 0\).
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) chéo nhau.
LG b
Viết phương trình mặt phẳng đi qua gốc tọa độ O và song song với \({d_1}\) và \({d_2}\).
Lời giải chi tiết:
Gọi \(\left( \alpha \right)\) là mặt phẳng qua O song song với cả \({d_1}\) và \({d_2}\).
\(Mp\left( \alpha \right)\) có vectơ pháp tuyến là \(\overrightarrow n = {1 \over 4}\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( {2;1;4} \right)\).
Vậy \(\left( \alpha \right):2\left( {x - 0} \right) + 1\left( {y - 0} \right) + 4\left( {z - 0} \right) = 0 \) \(\Leftrightarrow 2x + y + 4z = 0\).
Rõ ràng \({M_1},{M_2} \notin \left( \alpha \right)\).
Vậy \(\left( \alpha \right)\) chính là mặt phẳng cần tìm.
LG c
Tính khoảng cách giữa hai đường thẳng \({d_1}\) và \({d_2}\).
Phương pháp giải:
Công thức tính khoảng cách giữa hai đường thẳng chéo nhau \(d = {{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_2}{M_1}} } \right|} \over {\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}}\)
Lời giải chi tiết:
Khoảng cách giữa hai đường thẳng chéo nhau \({d_1}\) và \({d_2}\) là:
\(d = {{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_2}{M_1}} } \right|} \over {\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}} \) \(= {{168} \over {\sqrt {{8^2} + {4^2} + {{16}^2}} }} = 2\sqrt {21} \)
LG d
Viết phương trình đường vuông góc chung của hai đường thẳng đó.
Lời giải chi tiết:
Giả sử PQ là đường vuông góc chung của \({d_1}\) và \({d_2}\) với \(P \in {d_1}\,;\,Q \in {d_2}\). Khi đó ta có các giá trị t và t’ sao cho: \(P\left( {8 + t\,;5 + 2t\,;\,8 - t} \right),\,Q\left( {3 - 7t'\,;\,1 + 2t'\,;\,1 + 3t'} \right)\).
Ta có: \(\overrightarrow {PQ} = \left( { - 5 - 7t' - t; - 4 + 2t' - 2t; - 7 + 3t' + t} \right)\).
Vectơ \(\overrightarrow {PQ} \) đồng thời vuông góc với hai vectơ chỉ phương \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) nên
\(\eqalign{
& \left\{ \matrix{
\overrightarrow {PQ} .\overrightarrow {{u_1}} = 0 \hfill \cr
\overrightarrow {PQ} .\overrightarrow {{u_2}} = 0 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
- 5 - 7t' - t + 2\left( { - 4 + 2t' - 2t} \right) - \left( { - 7 + 3t' + t} \right) = 0 \hfill \cr
- 7\left( { - 5 - 7t' - t} \right) + 2\left( { - 4 + 2t' - 2t} \right) + 3\left( { - 7 + 3t' + t} \right) = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- 6t' - 6t = 6 \hfill \cr
62t' + 6t = - 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
t' = 0 \hfill \cr
t = - 1 \hfill \cr} \right. \cr} \)
Vậy \(P\left( {7;3;9} \right)\,,\,Q\left( {3;1;1} \right)\) và do đó, đường vuông góc chung của \({d_1}\) và \({d_2}\) có phương trình:
\({{x - 3} \over {7 - 3}} = {{y - 1} \over {3 - 1}} = {{z - 1} \over {9 - 1}} \) \(\Leftrightarrow {{x - 3} \over 2} = {{y - 1} \over 1} = {{z - 1} \over 4}\)
Bài 5. Quyền bình đẳng giữa các dân tộc, tôn giáo
Chương 2. Tính quy luật của hiện tượng di truyền
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 12
Chương 4. POLIME VÀ VẬT LIỆU POLIME
ĐỀ KIỂM TRA HỌC KÌ 2 (ĐỀ THI HỌC KÌ 2) - HÓA HỌC 12