PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 32 trang 116 sgk Toán 9 - tập 1

Đề bài

Cho tam giác đều \(ABC\) ngoại tiếp đường tròn bán kính \(1cm\). Diện tích của tam giác \(ABC\) bằng:

(A) \(6cm^{2}\);

(B) \(\sqrt{3}cm^{2}\);

(C) \(\dfrac{3\sqrt{3}}{4}cm^{2}\)

(D) \(3\sqrt{3}cm^{2}.\)

Hãy chọn câu trả lời đúng.

Phương pháp giải - Xem chi tiết

+) Sử dụng tính chất: Trong tam giác đều, đường cao đồng thời là đường trung tuyến.

+) Sử dụng hệ thức giữa cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\). Khi đó: \(AB=BC. \sin C;\ AC=BC. \sin B\). 

+) Công thức tính diện tích tam giác: \(S=\dfrac{1}{2}.h.a\)

trong đó \(h\) là độ dài đường cao, \(a\) là độ dài cạnh ứng với đường cao.

Lời giải chi tiết

 

Gọi \((O)\) là đường tròn nội tiếp tam giác đều \(ABC\) và H là tiếp điểm thuộc AB. 

Khi đó \(OH=1\) là bán kính của \((O)\)

Ta có: \(CH\bot AB\)

Trong tam giác đều ABC, đường cao CH cũng là đường trung tuyến.

Vì tam giác ABC đều nên O cũng là trọng tâm tam giác.

Theo tính chất đường trung tuyến, ta có:

\(OH=\dfrac{1}{3}CH \Rightarrow CH=3.OH=3.1=3.\)

Vì tam giác \(ABC\) đều nên \(\widehat{B}=60^o\).

Xét tam giác \(CHB\), vuông tại \(H\), \(\widehat{B}=60^o,\ CH=3\). Áp dụng hệ thức giữa cạnh và góc trong tam giác vuông, ta có:

\(CH=CB. \sin B \Rightarrow CB=\dfrac{CH}{\sin B}=\dfrac{3}{\sin 60^o}=2\sqrt 3\)

Suy ra \(AB=AC=BC=2\sqrt{3}(cm).\)

Do đó diện tích tam giác \(ABC\) là

\(S=\dfrac{1}{2}CH.AB=\dfrac{1}{2}.3. 2\sqrt{3}=3\sqrt{3}(cm^{2}).\) 

Ta chọn (D).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved