Bài 4 trang 71 SGK Hình học 11

Đề bài

Cho hình chóp \(S.ABCD\). Gọi \(A_1\) là trung điểm của cạnh \(SA\) và \(A_2\) là trung điểm của đoạn \(AA_1\). Gọi \((α)\) và \((β)\) là hai mặt phẳng song song với mặt phẳng \((ABCD)\) và lần lượt đi qua \(A_1,A_2\). Mặt phẳng \((α)\) cắt các cạnh \(SB, SC, SD\) lần lượt tại  \(B_1, C_1, D_1\). Mặt phẳng \((β)\) cắt các cạnh \(SB, SC, SD\) lần lượt tại \(B_2, C_2, D_2\). Chứng minh:

a) \(B_1, C_1, D_1\) lần lượt là trung điểm của các cạnh \(SB, SC, SD\).

b) \(B_1B_2 = B_2B\), \(C_1C_2 = C_2C\), \(D_1D_2 = D_2D\).

c) Chỉ ra các hình chóp cụt có một đáy là tứ giác \(ABCD\).

Phương pháp giải - Xem chi tiết

a) Sử dụng lý thuyết:

Nếu một mặt phẳng cắt một trong hai mặt phẳng song song thì nó cắt mặt phẳng còn lại và hai giao tuyến song song.

Và định lí đường trung bình của tam giác.

b) Sử dụng định lí đường trung bình của hình thang.

c) Dựa vào định nghĩa hình chóp cụt (SGK Hình học 11 trang 70).

Lời giải chi tiết

 

a) Ta có:

\(\left\{ \begin{array}{l}
\left( \alpha \right)//\left( {ABCD} \right)\\
\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\
\left( {SAB} \right) \cap \left( \alpha \right) = {A_1}{B_1}
\end{array} \right. \) \(\Rightarrow {A_1}{B_1}//AB\)

Mặt khác \(A_1\) là trung điểm của \(SA\) nên \(A_1B_1\) là đường trung bình của tam giác \(SAB\)

\( ⇒B_1\) là trung điểm của \(SB\).

Chứng minh tương tự với các điểm còn lại.

b) Ta có:

\(\left\{ \begin{array}{l}
\left( \beta \right)//\left( {ABCD} \right)\\
\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\
\left( {SAB} \right) \cap \left( \beta \right) = {A_2}{B_2}
\end{array} \right.\) \( \Rightarrow {A_2}{B_2}//AB\)

Mà \({A_1}{B_1}//AB \Rightarrow {A_2}{B_2}//{A_1}{B_1}\)

\({A_2}\) là trung điểm của \(A{A_1}\) nên \(A_2{B_2}\) là đường trung bình của hình thang \(AB{B_1}{A_1}\)

\(\Rightarrow \;{B_2}\) là trung điểm của \({B_1}B\)

Do đó \({B_1}{B_2} = {B_2}B\).

Chứng minh tương tự ta được: \(C_1C_2 = C_2C\), \(D_1D_2 = D_2D\).

c) Có hai hình chóp cụt có một đáy là tứ giác \(ABCD\): \(ABCD.{A_1}{B_1}{C_1}{D_1};\) \(ABCD.{A_2}{B_2}{C_2}{D_2}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved