Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Đề bài
Với các giá trị nào của a hàm số \(y = ax - {x^3}\) nghịch biến trên \(\mathbb R\)
Phương pháp giải - Xem chi tiết
- Tìm y'.
- Hàm số nghịch biến trên R khi và chỉ khi y'\(\le 0\) với mọi x.
Chú ý: Sử dụng định lý về dấu của tam thức bậc hai:
\(a{x^2} + bx + c \le 0\left( {a \ne 0} \right),\forall x \in R\) \(\Leftrightarrow \left\{ \begin{array}{l}
a < 0\\
\Delta \le 0
\end{array} \right.\)
Lời giải chi tiết
Cách 1:
Tập xác định \(D=\mathbb R\)
\(y' = a - 3{x^2}\)
Hàm số nghịch biến trên \(\mathbb{R}\) \( \Leftrightarrow y' \le 0,\forall x \in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow - 3{x^2} + a \le 0,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l} - 3 < 0\\\Delta = {0^2} - 4.\left( { - 3} \right).a \le 0\end{array} \right.\\ \Leftrightarrow 12a \le 0\\ \Leftrightarrow a \le 0\end{array}\)
Cách 2. Hàm số nghịch biến trên R, điều kiện y'≤0,∀x ∈R,y'=0 chỉ tại một số hữu hạn điểm.
Ta có: y'≤0 ⇔ a-3x2≤0, ∀x
⇔ 3x2 ≥ a, ∀x ∈R
⇔ a≤min(3x2 ), mà 3x2≥0 ∀x ∈R
Nên \(\mathop {\min }\limits_\mathbb{R} \left( {3{x^2}} \right) = 0\). Vậy \(a \le 0\).
Kết luận: với a≤0 thì y=ax-3x3 nghịch biến trên R.
Cách 3:
Tập xác định \(D=\mathbb R\)
\(y' = a - 3{x^2}\)
• Nếu \(a < 0\) thì \(y' < 0\) với mọi \(x \in {\mathbb R}\), khi đó hàm số nghịch biến trên \(\mathbb R\).
• Nếu \(a = 0\) thì \(y' = - 3{x^2} \le 0\) với mọi \(x \in {\mathbb R}\), \(y'=0\Leftrightarrow x=0\).
Vậy hàm số nghịch biến trên \(\mathbb R\).
• Nếu \(a > 0\) thì \(y' = 0\) \( \Leftrightarrow x = \pm {\sqrt {a \over 3}}\)
Ta có bảng biến thiên
Trong trường hợp này, hàm số không đồng biến trên \({\mathbb R}\)
Vậy hàm số nghịch biến trên \({\mathbb R}\) khi và chỉ khi \(a \le 0\).
Bài 40. Thực hành: Phân tích tình hình phát triển công nghiệp ở Đông Nam Bộ
Bài 37. Vấn đề khai thác ở thế mạnh Tây Nguyên
Chương 5. Đại cương về kim loại
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục công dân lớp 12
Đề kiểm tra 15 phút - Chương 9 – Hóa học 12