Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = {x^3} + 3{x^2} - 4\)
Lời giải chi tiết:
Tập xác đinh: \(D=\mathbb R\)
Sự biến thiên:
\(\eqalign{
& y' = 3{x^2} + 6x \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - 2 \hfill \cr} \right. \cr} \)
- Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\)
- Hàm số nghịch biến trên khoảng \((-2;0)\)
- Cực trị:
Hàm số đạt cực đại tại \(x=-2\;;y_{CĐ}=0\)
Hàm số đạt cực tiểu tại \(x=0\;;y_{CT}=-4\)
- Giới hạn:
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} + 3{x^2} - 4} \right) = + \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 3{x^2} - 4} \right) = - \infty \cr} \)
\(\eqalign{
& y'' = 6x + 6 \cr
& y'' = 0 \Leftrightarrow x = - 1 \cr} \)
Điểm uốn \(I(-1;-2)\)
- Bảng biến thiên:
Đồ thị:
Đồ thị hàm số nhận điiểm \(I(-1;-2)\) làm tâm đối xứng.
LG b
Viết phương trình tiếp tuyến của đồ thị tại điểm uốn.
Phương pháp giải:
Công thức viết phương trình tiếp tuyến của ĐTHS tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
\(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\) hay \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
Lời giải chi tiết:
\(y'(-1)=3.(-1)^2+6.(-1)=-3\)
Phương trình tiếp tuyến với đồ thị tại \(I(-1;-2)\) là:
\(y=-3(x+1)+(-2) \) \(\Leftrightarrow y = - 3x - 5\)
LG c
Chứng minh rằng điểm uốn là tâm đối xứng của đồ thị.
Lời giải chi tiết:
Cách 1. Gọi I(-1; -2) là tọa độ điểm uốn.
Theo công thức đổi trục tọa độ theo véc tơ OI ta có: \(\left\{ \begin{array}{l}x = X - 1\\y = Y - 2\end{array} \right.\)
Phương trình của \(\left( C \right)\) trong hệ tọa độ \(IXY\) là:
\(\begin{array}{l}Y - 2 = {\left( {X - 1} \right)^3} + 3{\left( {X - 1} \right)^2} - 4\\ \Leftrightarrow Y - 2 = {X^3} - 3{X^2} + 3X + 1 + 3{X^2} - 6X + 3 - 4\\ \Leftrightarrow Y = {X^3} - 3X\end{array}\)
Hàm số \(Y = {X^3} - 3X\) là hàm số lẻ nên đồ thị nhận điểm uốn làm tâm đối xứng
⇒ điều phải chứng minh
Cách 2:
Lấy điểm \({M_1}\left( {{x_1};{y_1}} \right)\) bất kì thuộc \(\left( C \right)\).
Điểm \({M_2}\left( {{x_2};{y_2}} \right)\) đối xứng với \({M_1}\) qua \(I\left( { - 1; - 2} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1 = \frac{{{x_1} + {x_2}}}{2}\\ - 2 = \frac{{{y_1} + {y_2}}}{2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = - 2 - {x_1}\\{y_2} = - 4 - {y_1}\end{array} \right.\) \( \Rightarrow {M_2}\left( { - 2 - {x_1}; - 4 - {y_1}} \right)\)
Ta kiểm tra \(M_2\) có thuộc đồ thị hàm số đã cho hay không. Ta có:
\(\begin{array}{l}{\left( { - 2 - {x_1}} \right)^3} + 3{\left( { - 2 - {x_1}} \right)^2} - 4\\ = - 8 - 12{x_1} - 6x_1^2 - x_1^3 + 3\left( {4 + 4{x_1} + x_1^2} \right) - 4\\ = - 8 - 12{x_1} - 6x_1^2 - x_1^3 + 12 + 12{x_1} + 3x_1^2 - 4\\ = - 3x_1^2 - x_1^3 = 4 - \left( {x_1^3 + 3x_1^2 - 4} \right)\\ = 4 - {y_1}\end{array}\)
Do đó điểm \({M_2}\left( { - 2 - {x_1}; - 4 - {y_1}} \right)\) cũng thuộc \(\left( C \right)\).
Vậy \(I\left( { - 1; - 2} \right)\) là tâm đối xứng của \(\left( C \right)\).
Cách 3:
Sử dụng lý thuyết: Đồ thị hàm số y=f(x) nhận \(I\left( {{x_0};{y_0}} \right)\) làm tâm đối xứng
\( \Leftrightarrow \) f(x0+x)+f(x0-x)=2y0 với ∀x
Áp dụng:
Đồ thị nhận I(-1; -2) là tâm đối xứng khi và chỉ khi:
⇔ f(-1+x)+f(-1-x)=-4 với ∀x
\(\eqalign{
& \Leftrightarrow {\left( { - 1 + x} \right)^3} + 3{\left( { - 1 + x} \right)^2} - 4 \cr&+ {\left( { - 1 - x} \right)^3} + 3{\left( { - 1 - x} \right)^2} - 4 = - 4 \cr
& \Leftrightarrow - 1 + 3x - 3{x^2} + {x^3} + 3 - 6x + 3{x^2} - 4 \cr&- 1 - 3x - 3{x^2} - {x^3} + 3 + 6x + 3{x^2} - 4 = - 4 \cr
& \Leftrightarrow - 4 = - 4\,\,\forall x \cr} \)
\(\Leftrightarrow I(-1;-2)\) là tâm đối xứng của đồ thị.
Đề kiểm tra 15 phút - Chương 2 - Hoá học 12
PHẦN 1. KĨ THUẬT ĐIỆN TỬ
SOẠN VĂN 12 TẬP 1
Đề thi học kì 1 của các trường có lời giải – Mới nhất
CHƯƠNG 10. HỆ SINH THÁI, SINH QUYỂN VÀ BẢO VỆ MÔI TRƯỜNG