GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 48 trang 45 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hàm số: \(y = {x^4} - 2m{x^2} + 2m\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm các giá trị của \(m\) sao cho hàm số có ba cực trị.

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)

\(y = 4{x^3} - 4mx = 4x\left( {{x^2} - m} \right)\)

\(y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
{x^2} = m \hfill \cr} \right.\)

Nếu \(m> 0\) thì \(y’=0\) \( \Leftrightarrow x = 0\) hoặc \(x =  - \sqrt m \) hoặc \(x = \sqrt m \)

Hàm số có ba điểm cực trị.
Nếu \(m \le 0\) thì \({x^2} - m \ge 0\) với mọi \(x \in\mathbb R\)

Hàm số có \(1\) cực tiểu.
Vậy hàm số có ba cực trị khi và chỉ khi \(m>0\).

Chú ý:

Có thể trình bày ngắn gọn như sau:

Để hàm số đã cho có 3 cực trị thì phương trình y’=0 có 3 nghiệm phân biệt

\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m > 0\end{array} \right. \Leftrightarrow m > 0\)

Vậy với m > 0 thì hàm số đã cho có 3 điểm cực trị.

LG b

Kháo sát sự biến thiên và vẽ đồ thị của hàm số với \(m = {1 \over 2}\). Viết phương trình tiếp tuyến của đồ thị tại hai điểm uốn.

Lời giải chi tiết:

Với \(m = {1 \over 2}\) ta có \(y = {x^4} - {x^2} + 1\)
TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \cr 
& y' = 4{x^3} - 2x = 2x\left( {2{x^2} - 1} \right)\cr&y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x = \pm \sqrt {{1 \over 2}}  \hfill \cr} \right. \cr} \)

\(y\left( 0 \right) = 1\) và \(y\left( { \pm \sqrt {{1 \over 2}} } \right) = {3 \over 4}\)

Hàm số đồng biến trên các khoảng \(\left( { - \frac{{\sqrt 2 }}{2};0} \right)\) và \(\left( {\frac{{\sqrt 2 }}{2}; + \infty } \right)\)

Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - \frac{{\sqrt 2 }}{2}} \right)\) và \(\left( {0;\frac{{\sqrt 2 }}{2}} \right)\)

Hàm số đạt cực đại tại \(x = 0\) và \({y_{CD}} = 1\)

Hàm số đạt cực tiểu tại \(x =  \pm \frac{{\sqrt 2 }}{2}\) và \({y_{CT}} =   \frac{3}{4}\)

\(y'' = 12{x^2} - 2\)

\(y'' = 0 \Leftrightarrow x =  \pm {{\sqrt 6 } \over 6};\,\,y\left( { \pm {{\sqrt 6 } \over 6}} \right) = {{31} \over {36}}\)

Xét dấu y”

Đồ thị có hai điểm uốn: \({I_1}\left( { - {{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\) và \({I_2}\left( {{{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\)
Điểm đặc biệt: \(x =  \pm 1 \Rightarrow y = 1\)


Đồ thị: Đồ thị nhận trục tung làm trục đối xứng.

Ta có: \(y'\left( { - \frac{{\sqrt 6 }}{6}} \right) = 4.{\left( { - \frac{{\sqrt 6 }}{6}} \right)^3} - 2.\left( { - \frac{{\sqrt 6 }}{6}} \right) \) \(= \frac{4}{{3\sqrt 6 }}\)

Do đó phương trình tiếp tuyến tại \({I_1}\left( { - {{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\) là \(y - {{31} \over {36}} = y'\left( { - {{\sqrt 6 } \over 6}} \right)\left( {x + {{\sqrt 6 } \over 6}} \right)\)

\( \Leftrightarrow y = {4 \over {3\sqrt 6 }}x + {{13} \over {12}}\)

Lại có \(y'\left( { \frac{{\sqrt 6 }}{6}} \right) = 4.{\left( {  \frac{{\sqrt 6 }}{6}} \right)^3} - 2.\left( {  \frac{{\sqrt 6 }}{6}} \right) \) \(= -\frac{4}{{3\sqrt 6 }}\)

Do đó phương trình tiếp tuyến tại \({I_2}\left( {{{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\) là: \(y - {{31} \over {36}} = y'\left( {  {{\sqrt 6 } \over 6}} \right)\left( {x - {{\sqrt 6 } \over 6}} \right)\) \(\Leftrightarrow y =  - {4 \over {3\sqrt 6 }}x + {{13} \over {12}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved