Bài 5 trang 110 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Cho hai đường thẳng: \(d:{x \over 1} = {{y - 1} \over 2} = {{z - 6} \over 3}\) và

\(d':\left\{ \matrix{
x = 1 + t \hfill \cr 
y = - 2 + t \hfill \cr 
3 - t \hfill \cr} \right.\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

Chứng minh hai đường thẳng đó chéo nhau. Tìm góc giữa chúng.

Lời giải chi tiết:

Đường thẳng đi qua M(0; 1; 6) và có vectơ chỉ phương \(\overrightarrow u  = \left( {1;2;3} \right)\).

Đường thẳng d’ đi qua \(M'\left( {1; - 2;3} \right)\) có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {1;1; - 1} \right)\).
Ta có \(\overrightarrow {MM'}  = \left( {1; - 3; - 3} \right);\) \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 5;4; - 1} \right)\)
\( \Rightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} \) \( =  - 5.1 - 3.4 + 1.3 =  - 14 \ne 0\).
Vậy hai đường thẳng d và d’ chéo nhau.

Vì \(\overrightarrow u .\overrightarrow {u'}  =1.1+2.1-3.1= 0 \) \(\Rightarrow d \bot d'\).

LG b

Tìm khoảng cách giữa d và d’.

Lời giải chi tiết:

Gọi h là khoảng cách giữa d và d’, ta có:
\(h = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = {{14} \over {\sqrt {25 + 16 + 1} }} = {{\sqrt {42} } \over 3}\).

LG c

Viết phương trình đường thẳng vuông góc chung của d và d’.

Lời giải chi tiết:

d có phương trình tham số là

\(\left\{ \matrix{
x = t \hfill \cr 
y = 1 + 2t \hfill \cr 
z = 6 + 3t \hfill \cr} \right.\).

Lấy điểm N(t; 1 + 2t; 6 + 3t)\( \in d\) và \(N'\left( {1 + t'; - 2 + t';3 - t'} \right) \in d'\).
NN’ là đường vuông góc chung của d và d’ khi và chỉ khi \(\overrightarrow {NN'}  \bot \overrightarrow u \) và \(\overrightarrow {NN'}  \bot \overrightarrow {u'} \). Ta có:

\(\eqalign{
& \overrightarrow {NN'} = \left( {1 + t' - t; - 3 + t' - 2t; - 3 - t' - 3t} \right) \cr 
& \left\{ \matrix{
\overrightarrow {NN'} .\overrightarrow u = 0 \hfill \cr 
\overrightarrow {NN'} .\overrightarrow {u'} = 0 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
1 + t' - t + 2\left( { - 3 + t' - 2t} \right) + 3\left( { - 3 - t' - 3t} \right) = 0 \hfill \cr 
1 + t' - t - 3 + t' - 2t + 3 + t' + 3t = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
- 14 - 14t = 0 \hfill \cr 
1 + 3t' = 0 \hfill \cr} \right.\cr & \Leftrightarrow \left\{ \matrix{
t = - 1 \hfill \cr 
t' = - {1 \over 3} \hfill \cr} \right. \cr} \)

Vậy \(N\left( { - 1; - 1;3} \right)\) và \(N'\left( {{2 \over 3}; - {7 \over 3};{{10} \over 3}} \right)\).
\(\overrightarrow {NN'}  = \left( {{5 \over 3};{{ - 4} \over 3};{1 \over 3}} \right)\).
Phương trình đường vuông góc chung qua \(N\left( { - 1; - 1;3} \right)\) và có vectơ chỉ phương \(\overrightarrow v  = 3\overrightarrow {NN'}  = \left( {5; - 4;1} \right)\) nên có phương trình tham số là:

\(\left\{ \matrix{
x = - 1 + 5t \hfill \cr 
y = - 1 - 4t \hfill \cr 
z = 3 + t \hfill \cr} \right.\)

Cách khác:

Theo câu a, ta có d⊥d', vậy đường vuông góc của d và d’ chính là giao tuyến của mp(P) và mp(Q).

Trong đó mp(P) chứa d và vuông góc với d’, mp(Q) chứa d’ và vuông góc với d.

(P) đi qua \(M\left( {0;1;6} \right)\) và nhận \(\overrightarrow {u'}  = \left( {1;1; - 1} \right)\) làm VTPT nên có phương trình là:

1(x-0)+1(y-1)-1(z-6)=0

\( \Leftrightarrow \) x+y-z+5=0

(Q) đi qua \(M'\left( {1; - 2;3} \right)\) và nhận \(\overrightarrow u  = \left( {1;2;3} \right)\) làm VTPT nên có phương trình là:

1(x-1)+2(y-2)+3(z-3)=0

\( \Leftrightarrow \)x+2y+3z-6=0

Vậy phương trình đường vuông góc chung của d và d’ là: \(\left\{ \begin{array}{l}x + y - z + 5 = 0\\x + 2y + 3z - 6 = 0\end{array} \right.\)

Cho \(x =  - 1\) \( \Rightarrow \left\{ \begin{array}{l}y - z =  - 4\\2y + 3z = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y =  - 1\\z = 3\end{array} \right.\) ta được điểm \(A\left( { - 1; - 1;3} \right) \in \Delta \).

\(\Delta \) là giao tuyến của (P) và (Q) nên \(\overrightarrow {{u_\Delta }}  = \left[ {\overrightarrow {{n_{\left( P \right)}}} ,\overrightarrow {{n_{\left( Q \right)}}} } \right] = \left( {5; - 4;1} \right)\).

Vậy \(\Delta \) có PTTS \(\left\{ \begin{array}{l}x =  - 1 + 5t\\y =  - 1 - 4t\\z = 3 + t\end{array} \right.\)

LG d

Viết phương trình đường thẳng song song với Oz, cắt cả d và d’.

Lời giải chi tiết:

Giả sử đường thẳng \(\Delta \) song song với Oz, cắt d và d’ lần lượt tại A và B.
Khi đó ta có \(A\left( {t;1 + 2t;6 + 3t} \right)\,,\) \(B\left( {1 + t', - 2 + t',3 - t'} \right)\) và \(\overrightarrow {AB}  = \left( {1 + t' - t; - 3 + t' - 2t; - 3 - t' - 3t} \right).\)

Vì \(\overrightarrow {AB} \) cùng phương với \(\overrightarrow k  = \left( {0;0;1} \right)\) nên

\(1 + t' - t = - 3 + t' - 2t = 0\) \( \Rightarrow \left\{ \matrix{
t = - 4 \hfill \cr 
t' = - 5 \hfill \cr} \right.\).

Vậy \(A\left( { - 4; - 7; - 6} \right)\) và \(\overrightarrow {AB}  = \left( {0;0;14} \right)\).
Vậy phương trình của \(\Delta \) là 

\(\left\{ \matrix{
x = - 4 \hfill \cr 
y = - 7 \hfill \cr 
z = - 6 + t \hfill \cr} \right.\)

Cách khác:

Đường thẳng song song với Oz và cắt cả d và d’ là giao tuyến của mp(α) và mp(β);

Trong đó (α) là mặt phẳng chứa d và song song với Oz.

(β) là mặt phẳng chứa d’ và song song với Oz.

Đường thẳng Oz có vectơ chỉ phương là \(\overrightarrow k  = \left( {0;0;1} \right)\)

Mặt phẳng (α) đi qua M(0; 1; 6) và nhận  \(\left[ {\overrightarrow u ,\overrightarrow k } \right] = \left( {2; - 1;0} \right)\) làm vectơ pháp tuyến nên (α) có phương trình là: 2x-y+1=0

Tương tự mp(β) có phương trình: x – y- 3 =0

Vậy phương trình đường thẳng cần tìm là: \(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - y - 3 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x =  - 4\\y =  - 7\\z \text { tùy ý }\end{array} \right.\)

Hay phương trình tham số của đường thẳng là \(\left\{ \begin{array}{l}x =  - 4\\y =  - 7\\z = t\end{array} \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved