Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho hai đường thẳng: \(d:{x \over 1} = {{y - 1} \over 2} = {{z - 6} \over 3}\) và
\(d':\left\{ \matrix{
x = 1 + t \hfill \cr
y = - 2 + t \hfill \cr
3 - t \hfill \cr} \right.\).
LG a
Chứng minh hai đường thẳng đó chéo nhau. Tìm góc giữa chúng.
Lời giải chi tiết:
Đường thẳng đi qua M(0; 1; 6) và có vectơ chỉ phương \(\overrightarrow u = \left( {1;2;3} \right)\).
Đường thẳng d’ đi qua \(M'\left( {1; - 2;3} \right)\) có vectơ chỉ phương \(\overrightarrow {u'} = \left( {1;1; - 1} \right)\).
Ta có \(\overrightarrow {MM'} = \left( {1; - 3; - 3} \right);\) \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 5;4; - 1} \right)\)
\( \Rightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} \) \( = - 5.1 - 3.4 + 1.3 = - 14 \ne 0\).
Vậy hai đường thẳng d và d’ chéo nhau.
Vì \(\overrightarrow u .\overrightarrow {u'} =1.1+2.1-3.1= 0 \) \(\Rightarrow d \bot d'\).
LG b
Tìm khoảng cách giữa d và d’.
Lời giải chi tiết:
Gọi h là khoảng cách giữa d và d’, ta có:
\(h = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = {{14} \over {\sqrt {25 + 16 + 1} }} = {{\sqrt {42} } \over 3}\).
LG c
Viết phương trình đường thẳng vuông góc chung của d và d’.
Lời giải chi tiết:
d có phương trình tham số là
\(\left\{ \matrix{
x = t \hfill \cr
y = 1 + 2t \hfill \cr
z = 6 + 3t \hfill \cr} \right.\).
Lấy điểm N(t; 1 + 2t; 6 + 3t)\( \in d\) và \(N'\left( {1 + t'; - 2 + t';3 - t'} \right) \in d'\).
NN’ là đường vuông góc chung của d và d’ khi và chỉ khi \(\overrightarrow {NN'} \bot \overrightarrow u \) và \(\overrightarrow {NN'} \bot \overrightarrow {u'} \). Ta có:
\(\eqalign{
& \overrightarrow {NN'} = \left( {1 + t' - t; - 3 + t' - 2t; - 3 - t' - 3t} \right) \cr
& \left\{ \matrix{
\overrightarrow {NN'} .\overrightarrow u = 0 \hfill \cr
\overrightarrow {NN'} .\overrightarrow {u'} = 0 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
1 + t' - t + 2\left( { - 3 + t' - 2t} \right) + 3\left( { - 3 - t' - 3t} \right) = 0 \hfill \cr
1 + t' - t - 3 + t' - 2t + 3 + t' + 3t = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- 14 - 14t = 0 \hfill \cr
1 + 3t' = 0 \hfill \cr} \right.\cr & \Leftrightarrow \left\{ \matrix{
t = - 1 \hfill \cr
t' = - {1 \over 3} \hfill \cr} \right. \cr} \)
Vậy \(N\left( { - 1; - 1;3} \right)\) và \(N'\left( {{2 \over 3}; - {7 \over 3};{{10} \over 3}} \right)\).
\(\overrightarrow {NN'} = \left( {{5 \over 3};{{ - 4} \over 3};{1 \over 3}} \right)\).
Phương trình đường vuông góc chung qua \(N\left( { - 1; - 1;3} \right)\) và có vectơ chỉ phương \(\overrightarrow v = 3\overrightarrow {NN'} = \left( {5; - 4;1} \right)\) nên có phương trình tham số là:
\(\left\{ \matrix{
x = - 1 + 5t \hfill \cr
y = - 1 - 4t \hfill \cr
z = 3 + t \hfill \cr} \right.\)
Cách khác:
Theo câu a, ta có d⊥d', vậy đường vuông góc của d và d’ chính là giao tuyến của mp(P) và mp(Q).
Trong đó mp(P) chứa d và vuông góc với d’, mp(Q) chứa d’ và vuông góc với d.
(P) đi qua \(M\left( {0;1;6} \right)\) và nhận \(\overrightarrow {u'} = \left( {1;1; - 1} \right)\) làm VTPT nên có phương trình là:
1(x-0)+1(y-1)-1(z-6)=0
\( \Leftrightarrow \) x+y-z+5=0
(Q) đi qua \(M'\left( {1; - 2;3} \right)\) và nhận \(\overrightarrow u = \left( {1;2;3} \right)\) làm VTPT nên có phương trình là:
1(x-1)+2(y-2)+3(z-3)=0
\( \Leftrightarrow \)x+2y+3z-6=0
Vậy phương trình đường vuông góc chung của d và d’ là: \(\left\{ \begin{array}{l}x + y - z + 5 = 0\\x + 2y + 3z - 6 = 0\end{array} \right.\)
Cho \(x = - 1\) \( \Rightarrow \left\{ \begin{array}{l}y - z = - 4\\2y + 3z = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - 1\\z = 3\end{array} \right.\) ta được điểm \(A\left( { - 1; - 1;3} \right) \in \Delta \).
\(\Delta \) là giao tuyến của (P) và (Q) nên \(\overrightarrow {{u_\Delta }} = \left[ {\overrightarrow {{n_{\left( P \right)}}} ,\overrightarrow {{n_{\left( Q \right)}}} } \right] = \left( {5; - 4;1} \right)\).
Vậy \(\Delta \) có PTTS \(\left\{ \begin{array}{l}x = - 1 + 5t\\y = - 1 - 4t\\z = 3 + t\end{array} \right.\)
LG d
Viết phương trình đường thẳng song song với Oz, cắt cả d và d’.
Lời giải chi tiết:
Giả sử đường thẳng \(\Delta \) song song với Oz, cắt d và d’ lần lượt tại A và B.
Khi đó ta có \(A\left( {t;1 + 2t;6 + 3t} \right)\,,\) \(B\left( {1 + t', - 2 + t',3 - t'} \right)\) và \(\overrightarrow {AB} = \left( {1 + t' - t; - 3 + t' - 2t; - 3 - t' - 3t} \right).\)
Vì \(\overrightarrow {AB} \) cùng phương với \(\overrightarrow k = \left( {0;0;1} \right)\) nên
\(1 + t' - t = - 3 + t' - 2t = 0\) \( \Rightarrow \left\{ \matrix{
t = - 4 \hfill \cr
t' = - 5 \hfill \cr} \right.\).
Vậy \(A\left( { - 4; - 7; - 6} \right)\) và \(\overrightarrow {AB} = \left( {0;0;14} \right)\).
Vậy phương trình của \(\Delta \) là
\(\left\{ \matrix{
x = - 4 \hfill \cr
y = - 7 \hfill \cr
z = - 6 + t \hfill \cr} \right.\)
Cách khác:
Đường thẳng song song với Oz và cắt cả d và d’ là giao tuyến của mp(α) và mp(β);
Trong đó (α) là mặt phẳng chứa d và song song với Oz.
(β) là mặt phẳng chứa d’ và song song với Oz.
Đường thẳng Oz có vectơ chỉ phương là \(\overrightarrow k = \left( {0;0;1} \right)\)
Mặt phẳng (α) đi qua M(0; 1; 6) và nhận \(\left[ {\overrightarrow u ,\overrightarrow k } \right] = \left( {2; - 1;0} \right)\) làm vectơ pháp tuyến nên (α) có phương trình là: 2x-y+1=0
Tương tự mp(β) có phương trình: x – y- 3 =0
Vậy phương trình đường thẳng cần tìm là: \(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - y - 3 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = - 7\\z \text { tùy ý }\end{array} \right.\)
Hay phương trình tham số của đường thẳng là \(\left\{ \begin{array}{l}x = - 4\\y = - 7\\z = t\end{array} \right.\)
PHẦN 2. KĨ THUẬT ĐIỆN
Đề kiểm tra giữa học kì 1
CHƯƠNG V. SÓNG ÁNH SÁNG
CHƯƠNG 1. CƠ CHẾ DI TRUYỀN VÀ BIẾN DỊ
Chương 4. Dao động và sóng điện từ