Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Gọi
LG a
Lời giải chi tiết:
Thật vậy,
+ Nếu a ⊂ (P), khi đó, lấy điểm A bất kì trên a thì A∈ (P) nên Đ biến A thành A'≡ A.
Vậy Đ biến a thành a’ ≡a
+ Nếu a ⊥ (P). Lấy A bất kì trên a.
Nếu Đ biến A thành A’ thì AA’ ⊥ (P) mà a ⊥ (P), (A) ∈ a ⇒ A' ∈ a ⇒ a' ≡ a
Vậy nếu đường thẳng a nằm trong mp(P) hoặc đường thẳng a vuông góc với mp(P) thì qua Đ biến đường thẳng a thành a’ ≡ a.
LG b
Lời giải chi tiết:
Nếu a // (P).
Lấy 2 điểm A, B phân biệt trên a giả sử Đ biến A thành A’, B thành B’.
Ta thấy tứ giác ABB’A’ là hình chữ nhật nếu A’B’ // AB hay a’ // a
Vậy để a // a’ thì a// (P).
LG c
Lời giải chi tiết:
Giả sử a cắt (P) tại I nhưng không vuông góc với (P).
Khi đó, Đ biến I thành chính nó (vì I ∈(P) và biến A ∈a (với A không trùng I) thành A’ sao cho (P) là mặt phẳng trung trực của AA’.
Vậy Đ biến AI thành A’I.
Do a không vuông góc với (P) nên dễ thấy A, I, A’ không thẳng hàng hay AI, A’I cắt nhau tại I tức a, a’ cắt nhau.
Vậy a cắt a’ nếu a cắt (P) nhưng a không vuông góc với (P).
LG d
Lời giải chi tiết:
Lý thuyết Ngữ Văn
Unit 10. Lifelong Learning
Chương 3. Dòng điện xoay chiều
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 12
GIẢI TÍCH - TOÁN 12 NÂNG CAO