GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 6 trang 190 SGK Giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Chứng minh rằng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Phần thực của số phức z bằng \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right);\)

Phương pháp giải:

Giả sử \(z=a+bi\;(a,b\in\mathbb R)\), tính các số phức \({1 \over 2}\left( {z + \overline z } \right)\) và \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right)\) suy ra đpcm.

Lời giải chi tiết:

Giả sử \(z=a+bi\;(a,b\in\mathbb R)\) thì \(\overline z  = a - bi\)

\( \Rightarrow \frac{1}{2}\left( {z + \overline z } \right)\) \( = \frac{1}{2}\left( {a + bi + a - bi} \right) = a\) là phần thực của \(z\).

\(\frac{1}{{2i}}\left( {z - \overline z } \right)\) \( = \frac{1}{{2i}}\left( {a + bi - a + bi} \right)\) \( = \frac{1}{{2i}}.2bi = b\) là phần ảo của \(z\).

LG b

Số phức z là số ảo khi và chỉ khi \(z =  - \overline z ;\)

Lời giải chi tiết:

z là số ảo khi và chỉ khi phần thực của z bằng 0

\(\Leftrightarrow {1 \over 2}\left( {z + \overline z } \right) = 0 \Leftrightarrow z =  - \overline z \)

Cách khác:

\(z =- \overline z\) \(\Leftrightarrow z + \overline z  = 0 \) \(\Leftrightarrow a + bi + a - bi =0\) \( \Leftrightarrow 2a = 0 \) \(\Leftrightarrow a = 0\)

LG c

Với mọi số phức z, z', ta có \(\overline {z + z'}  = \overline z  + \overline {z'} ,\,\overline {zz'}  = \overline z .\,\overline {z'} \), và nếu \(z \ne 0\) thì \({{\overline {z'} } \over {\overline z }} = \overline {\left( {{{z'} \over z}} \right)} \).

Lời giải chi tiết:

Giả sử \(z=a+bi;\; z'=a'+b'i\) \((a,b,a',b'\in\mathbb R)\)

Ta có:

\(\eqalign{
& \overline {z + z'} = \overline {(a + a') + (b + b')i} \cr &= a + a' - (b + b')i \cr 
&= a - bi + a' - b'i = \overline z + \overline {z'} \cr 
& \overline {z.z'} = \overline {\left( {a + bi} \right).\left( {a' + b'i} \right)} \cr &= \overline {\left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i} \cr 
& = aa' - bb' - \left( {ab' + a'b} \right)i \cr 
&  \overline z.\overline {z'}  = \left( {a - bi} \right)\left( {a' - b'i} \right)\cr 
& = aa' - a'bi - ab'i + bb'{i^2}\cr & = aa' - bb' - \left( {a'b + ab'} \right)i\cr & \Rightarrow \overline {z.z'}  = \overline z .\overline {z'} \cr &\overline {\left( {{{z'} \over z}} \right)} = \overline {\left( {{{z'.\overline z } \over {z.\overline z }}} \right)} = {1 \over {z.\overline z }}.\overline {z'} .\overline {\overline z } \cr &= {1 \over {z.\overline z }}.\overline {z'} .z = {{\overline {z'} } \over {\overline z }} \cr} \)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved