Bài 6 trang 63 Hình học 12 Nâng cao

Đề bài

Một hình thang cân \(ABCD\) có các cạnh đáy \(AB = 2a, BD = 4a\), cạnh bên \(AD = BC = 3a\). Hãy tính thể tích và diện tích toàn phần của khối tròn xoay sinh bởi hình thang đó khi quay quanh trục đối xứng của nó.

Lời giải chi tiết

Gọi \(S\) là giao điểm của hai cạnh bên \(AD\) và \(BC\) của hình thang.

Đường cao \(SO\) của tam giác cân \(SCD\) là trục đối xứng của hình thang, do đó \(SO\) cắt \(AB\) tại trung điểm \(O’\) của \(AB\).

Khi quay quanh \(SO\), tam giác \(SCD\) sinh ra khối nón \(\left( {{N_1}} \right)\) có thể tích \({V_1}\), tam giác \(SAB\) sinh ra khối nón \(\left( {{N_2}} \right)\) có thể tích \({V_2}\), còn hình thang \(ABCD\) sinh ra một khối tròn xoay \(\left( H \right)\) có thể tích \(V = {V_1} - {V_2}\).

Vì \(AB = {1 \over 2}CD\) nên \(AB\) là đường trung bình của tam giác \(SCD\) nên \(SB = BC = 3a\).

Ta có \(SO' = \sqrt {S{B^2} - O'{B^2}} \) \( = \sqrt {9{a^2} - {a^2}}  = 2\sqrt 2 a\)

\(\eqalign{
& SO = 2SO' = 4\sqrt 2 a \cr 
& V = {V_1} - {V_2}\cr& = {1 \over 3}\pi O{C^2}.SO - {1 \over 3}\pi O'{B^2}.SO' \cr&= {1 \over 3}\pi 4{a^2}.SO - {1 \over 3}\pi {a^2}SO' \cr 
& = {1 \over 3}\pi {a^2}\left( {4SO - SO'} \right) \cr&= {1 \over 3}\pi {a^2}\left( {16\sqrt 2 a - 2\sqrt 2 a} \right) \cr&= {{14\sqrt 2 } \over 3}\pi {a^3} \cr} \)

Diện tích xung quanh của khối tròn xoay \((H)\) là:

\(\eqalign{
& {S_{xq}} = {S_1} - {S_2} \cr&= \pi OC.SC - \pi O'B.SB \cr& = \pi .2a.6a - \pi .a.3a= 9\pi {a^2} \cr 
& {S_{tp}} = {S_{xq}} + {S_d} \cr& = 9\pi {a^2} + \pi {a^2} + 4\pi {a^2} = 14\pi {a^2} \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved