GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 62 trang 57 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x - 1} \over {x + 1}}\)

Lời giải chi tiết:

Tập xác định: \(D = R\backslash \left\{ { - 1} \right\}\)

Sự biến thiên:

\(y' = {2 \over {{{(x + 1)}^2}}} > 0\,\forall x \in D\)

Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và \(( - 1; + \infty )\)

Giới hạn:

\(\mathop {\lim y}\limits_{x \to  - {1^ - }}  =  + \infty ;\,\mathop {\lim y}\limits_{x \to  - {1^ + }}  =  - \infty \)

Tiệm cận đứng: \(x=-1\)

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  = 1\)

Tiệm cận ngang: \(y=1\) 

Bảng biến thiên:

Đồ thị giao \(Ox\) tại điểm \((1;0)\)

Đồ thị giao \(Oy\) tại điểm \((0;-1)\)

LG b

Chứng minh rằng giao điểm \(I\) của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó.

Lời giải chi tiết:

Giao điểm của hai tiệm cận của đường cong là \(I(-1;1)\)

Công thức đổi trục tọa độ theo vecto \(\overrightarrow {OI} \) là 

\(\left\{ \matrix{
x = X - 1 \hfill \cr 
y = Y + 1 \hfill \cr} \right.\)

Phương trình đường cong trong hệ tọa độ \(IXY\) là:

\(Y + 1 = {{X - 1 - 1} \over {X - 1 + 1}} \) \(\Leftrightarrow Y + 1 = {{X - 2} \over X} =1-{2\over X}\) \(\Leftrightarrow Y =  - {2 \over X}\)

Đây là hàm số lẻ nên đồ thị nhận gốc \(I\) làm tâm đối xứng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved