Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Trong không gian tọa độ Oxyz cho các điểm A(1; 5; 3), B(4; 2; -5), C(5; 5; -1) và D(1; 2; 4).
a) Chứng tỏ rằng bốn điểm A, B, C, D không đồng phẳng.
b) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D . Xác định tâm và bán kính của mặt cầu đó.
c) Viết phương trình mặt phẳng đi qua A, B, C và tìm khoảng cách từu điểm D tới mặt phẳng đó.
d) Viết phương trình mặt phẳng vuông góc với CD và tiếp xúc với mặt cầu (S).
e) Tìm bán kính các đường tròn giao tuyến của mặt cầu (S) và các mặt phẳng tọa độ.
Lời giải chi tiết
a) Ta có:
\(\eqalign{
& \overrightarrow {AB} = \left( {3, - 3, - 8} \right),\overrightarrow {AC} = \left( {4,0, - 4} \right). \cr
& \overrightarrow {AD} = \left( {0, - 3,1} \right) \cr
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]= \left( {12, - 20,12} \right), \cr & \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = 72 \ne 0. \cr} \)
Vậy bốn điểm A, B, C, D không đồng phẳng.
b) Giả sử mặt cầu (S) có phương trình: \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz = 0\).
Vì \(A,B,C,D \in \left( S \right)\) nên ta có hệ phương trình:
\(\left\{ \matrix{
1 + 25 + 9 - 2a - 10b - 6c + d = 0 \hfill \cr
16 + 4 + 25 - 8a - 4b + 10c + d = 0 \hfill \cr
1 + 4 + 16 - 2a - 4b - 8c + d = 0 \hfill \cr} \right.\) \( \Rightarrow \left\{ \matrix{
3a - 3b - 8c = 5 \hfill \cr
a - c = 2 \hfill \cr
- 3b + c = - 7 \hfill \cr} \right. \) \(\Rightarrow \left\{ \matrix{
a = 1 \hfill \cr
b = 2 \hfill \cr
c = - 1 \hfill \cr
d = - 19 \hfill \cr} \right.\)
Vậy \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 2z - 19 = 0.\)
Mặt cầu (S) có tâm \(I\left( {1,2, - 1} \right)\) và bán kính \(R = \sqrt {1 + 4 + 1 + 19} = 5.\)
c) Mp(ABC) có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {12, - 20,12} \right) \) \(= 4\left( {3, - 5,3} \right).\)
Mp(ABC) đi qua \(A\left( {1,5,3} \right)\) nên có phương trình:
\(3\left( {x - 1} \right) - 5\left( {y - 5} \right) + 3\left( {z - 3} \right)=0 \) \(\Leftrightarrow 3x - 5y + 3z + 13 = 0.\)
Khoảng cách từ D đến mp(ABC) là: \(h = {{\left| {3.1 - 5.2 + 3.4 + 13} \right|} \over {\sqrt {{3^2} + {5^2} + {3^2}} }} = {{18} \over {\sqrt {43} }}\).
d) Mặt phẳng \(\left( \alpha \right)\) vuông góc với CD có vectơ pháp tuyến là \(\overrightarrow {CD} = \left( { - 4, - 3,5} \right)\) nên có phương trình:
\( - 4x - 3y + 5z + d = 0.\)
Mặt phẳng đó tiếp xúc với mặt cầu (S) khi và chỉ khi khoảng cách từ tâm \(I\left( {1,2, - 1} \right)\) của mặt cầu(S) tới mặt phẳng \(\left( \alpha \right)\) bằng 5, tức là:
\({{\left| { - 4.1 - 3.2 - 5.1 + d} \right|} \over {\sqrt {16 + 9 + 25} }} = 5 \) \(\Leftrightarrow {{\left| { - 15 + d} \right|} \over {\sqrt {50} }} = 5 \Leftrightarrow d = 15 \pm 25\sqrt 2 .\)
Vậy \(\left( \alpha \right): - 4x - 2y + 5z + 15 \pm 25\sqrt 2 = 0.\)
e) Mặt cầu (S) có tâm \(I\left( {1,2, - 1} \right)\), mp(Oxy) có phương trình là z = 0. Khoảng cách từ điểm I đến mp(Oxy) là \({d_1} = \left| { - 1} \right| = 1 < R\) nên (S) cắt mặt phẳng theo đường tròn có bán kính là \({r_1} = \sqrt {{R^2} - d_1^2} = \sqrt {25 - 1} = 2\sqrt 6 .\)
Tương tự mp(Oyz) có phương trình là x = 0. Khoảng cách từ tâm I đến mp(Oyz) là \({d_2} = \left| 1 \right| = 1 < R\) nên (S) cắt mp(Oyz) theo đường tròn có bán kính là \({r_2} = \sqrt {{R^2} - d_2^2} = \sqrt {25 - 1} = 2\sqrt 6 .\)
Tương tự mp(Oxz) có phương trình là y = 0. Khoảng cách từ tâm I đến mp(Oxz) là \({d_3} = \left| 2 \right| = 2 < R\) nên (S) cắt mp(Oyz) theo đường tròn có bán kính là \({r_3} = \sqrt {{R^2} - d_3^2} = \sqrt {25 - 4} = \sqrt {21} .\)
CHƯƠNG I. ĐỘNG LỰC HỌC VẬT RẮN
Đề kiểm tra 15 phút - Chương 7 – Hóa học 12
Chương 2. Tính quy luật của hiện tượng di truyền
Tiếng Anh 12 mới tập 1
Tải 10 đề thi giữa kì 1 Hóa 12