Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Hình viên phân là hình tròn giới hạn bởi một cung tròn và dây căng cung ấy. Hãy tính diện tích hình viên phân \(AmB\), biết góc ở tâm \(\widehat {AOB} = {60^0}\) và bán kính đường tròn là \(5,1 cm\) (h.64)
Phương pháp giải - Xem chi tiết
+) Diện tích hình viên phân = Diện tích cung tròn \(AmB\) - Diện tích tam giác \(OAB.\)
+) Diện tích quạt tròn bán kính \(R\) và có số đo cung \(n^0\) là \(S=\dfrac {\pi R^2 n}{360}\)
Lời giải chi tiết
\(∆OAB\) là tam giác đều có cạnh bằng \(R = 5,1cm\).
Áp dụng công thức tính diện tích tam giác đều cạnh \(a\) là \(\displaystyle {{{a^2}\sqrt 3 } \over 4}\) ta có
\(\displaystyle {S_{\Delta OBA}} ={{{R^2}\sqrt 3 } \over 4}\) (1)
Diện tích hình quạt tròn \(AOB\) là:
\(\displaystyle {{\pi .{R^2}{{.60}^0}} \over {{{360}^0}}} = {{\pi {R^2}} \over 6}\) (2)
Từ (1) và (2) suy ra diện tích hình viên phân là:
\(\displaystyle {{\pi {R^2}} \over 6} - {{{R^2}\sqrt 3 } \over 4} = {R^2}\left( {{\pi \over 6} - {{\sqrt 3 } \over 4}} \right)\)
Thay \(R = 5,1\) ta có \(S\)viên phân ≈\( 2,4\) \((cm^2)\)
Bài 36. Vùng Đồng bằng sông Cửu Long (tiếp theo)
Bài 7: Kế thừa và phát huy truyền thống tốt đẹp của dân tộc
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY
Đề thi vào 10 môn Toán Nam Định
Đề thi vào 10 môn Toán Hà Tĩnh