Bài 9 trang 15 SGK Hình học 12 Nâng cao

Đề bài

Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.

Lời giải chi tiết

* Phép tịnh tiến

 

Giả sử \({T_{\overrightarrow v }}\) là phép tịnh tiến theo vectơ \(\overrightarrow v \)

\(\eqalign{
& {T_{\overrightarrow v }}:\,M \to M' \cr 
& \,\,\,\,\,\,\,\,N \to N' \cr} \)

Ta có \(\overrightarrow {MM'}  = \overrightarrow {NN'}  = \overrightarrow v\) nên MM'N'N là hình bình hành

\(  \Rightarrow \overrightarrow {MN}  = \overrightarrow {M'N'}  \Rightarrow MN = M'N'\)
Vậy phép tịnh tiến là một phép dời hình.
* Phép đối xứng trục

Giả sử \({\tilde N_d}\) là phép đối xứng qua đường thẳng \(d\)
Giả sử

\({{\tilde N}_d}:M \to M'\)

\(N \to N'\)

Gọi \(H\) và \(K\) lần lượt là trung điểm của \(MM’\) và \(NN’\).
Ta có:

\(\eqalign{
& \overrightarrow {MN} + \overrightarrow {M'N'}\cr & = \left( {\overrightarrow {MH} + \overrightarrow {HK} + \overrightarrow {KN} } \right) \cr & + \left( {\overrightarrow {M'H} + \overrightarrow {HK} + \overrightarrow {KN'} } \right) \cr & = \left( {\overrightarrow {MH}  + \overrightarrow {M'H} } \right) + \left( {\overrightarrow {KN}  + \overrightarrow {KN'} } \right) \cr & + \left( {\overrightarrow {HK}  + \overrightarrow {HK} } \right) \cr &  = \overrightarrow 0  + \overrightarrow 0  + 2\overrightarrow {HK} \cr &= 2\overrightarrow {HK} \cr 
& \overrightarrow {MN} - \overrightarrow {M'N'}\cr & = (\overrightarrow {HN} - \overrightarrow {HM} )- ( \overrightarrow {HN'} - \overrightarrow {HM'} )\cr & = \left( {\overrightarrow {HN}  - \overrightarrow {HN'} } \right) + \left( {\overrightarrow {HM'}  - \overrightarrow {HM} } \right)\cr &= \overrightarrow {N'N} + \overrightarrow {MM'} \cr} \)

Vì \(\overrightarrow {MM'}  \bot \overrightarrow {HK} \) và \(\overrightarrow {N'N}  \bot  \overrightarrow {HK} \) nên

\(\eqalign{
& {\overrightarrow {MN} ^2} - {\overrightarrow {M'N'} ^2} \cr &= \left( {\overrightarrow {MN} + \overrightarrow {M'N'} } \right)\left( {\overrightarrow {MN} - \overrightarrow {M'N'} } \right) \cr &= 2\overrightarrow {HK} \left( {\overrightarrow {N'N} + \overrightarrow {MM'} } \right) \cr &= 2\overrightarrow {HK} .\overrightarrow {N'N}  + 2\overrightarrow {HK} .\overrightarrow {MM'}  \cr &= 2.0 + 2.0 = 0 \cr 
& \Rightarrow M{N^2} = M'N{'^2} \Rightarrow MN = M'N' \cr} \)

Vậy phép đối xứng qua \(d\) là phép dời hình.

Cách khác:

Giả sử phép đối xứng qua đường thẳng d biến M thành M’, N thành N’

Gọi (P) là mặt phẳng chứa NM’ và (P) // MM’

\({M_1},{M_1}'\) lần lượt là hình chiếu của M, M’ trên (P); O = ∩(P).

Ta có d ⊥ (P) nên O đồng thời là trung điểm của \({M_1}{M_1}'\) và NN'.

Vậy phép đối xứng tâm O biến \(M_1\) thành \(M_1'\), N thành N’ nên \({M_1},{M_1}'\) nên \(M_1 N=M_1'N'\).

Mặt khác \(M_1 N,M_1'N'\) lần lượt là hình chiếu của MN, M’N’ trên (P), MM’ // (P) nên MN = M’N’.

Vậy phép đối xứng qua đường thẳng là phép dời hình.

* Phép đối xứng tâm
Nếu phép đối xứng qua tâm \(O\) biến hai điểm \(M, N\) lần lượt thành hai điểm \(M’, N’\) thì \(\overrightarrow {OM'}  =  - \overrightarrow {OM} ;\overrightarrow {ON'}  =  - \overrightarrow {ON} \)
suy ra \(\overrightarrow {M'N'}  = \overrightarrow {ON'}  - \overrightarrow {OM'}  \) \(  =  - \overrightarrow {ON}  + \overrightarrow {OM} = \overrightarrow {NM}  \) \(\Rightarrow M'N' = MN\)
Vậy phép đối xứng tâm \(O\) là một phép dời hình.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved