Phương pháp:
+ Xác định rõ các đại lượng có trên đề bài.
+ Xác định tương quan tỉ lệ thuận giữa hai đại lượng
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.
Ví dụ: Cứ \(100\,kg\) thóc thì cho \(60\,kg\) gạo. Hỏi \(2\)tấn thóc thì cho bao nhiêu kilogam gạo?
Phương pháp giải:
+ Xác định tương quan tỉ lệ thuận giữa hai đại lượng
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.
Cách giải:
Đổi \(2\)tấn\( = 2000\,kg\).
Gọi \(x\,\,\left( {x > 0} \right)\) là số kilogam gạo có trong hai tấn thóc.
Ta thấy số tấn thóc và số gạo là hai đại lượng tỉ lệ thuận.
Ta có \(\dfrac{{60}}{{100}} = \dfrac{x}{{2000}} \Rightarrow x = \dfrac{{2000.60}}{{100}} = 1200\) kg.
Vậy 2 tấn thóc có \(1200\,kg\) gạo.
Chủ đề 2. Phân tử
CHƯƠNG II. HÀM SỐ VÀ ĐỒ THỊ
Bài 10
Bài 2. Bài học cuộc sống
Chương 8. Tam giác
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7