Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABC. Các điểm K, N lần lượt là trung điểm của SA và CB. Điểm M thuộc cạnh SC sao cho \({{SM} \over {MC}} = {2 \over 3}\).
a) Tính tỉ số diện tích của hai tam giác ASC và AKM.
b) Mặt phẳng qua K và song song với hai đường thẳng AB và SC có qua điểm N hay không?
c) Xác định thiết diện của hình chóp khi cắt bởi mp(KMN).
d) Chứng minh rằng đường thẳng KN chia thiết diện thành hai phần có diện tích bằng nhau.
Lời giải chi tiết
a) Từ C và M ta lần lượt kẻ các đường CH, MH’ cùng vuông góc với SA (H, H’ cùng thuộc SA).
Ta có
\(\eqalign{ & {{{S_{ASC}}} \over {{S_{AKM}}}} = {{{1 \over 2}SA.CH} \over {{1 \over 2}AK.MH'}} \cr & = 2.{{CH} \over {MH'}} = 2.{{SC} \over {SM}} = 2.{5 \over 2} = 5 \cr} \)
b) Gọi:
(P) là mặt phẳng qua K, song song với AB và SC;
(Q) là mặt phẳng qua AB và song song với SC;
(R) là mặt phẳng qua SC và song song với AB.
Khi đó ba mặt phẳng (P), (Q), (R) đôi một song song.
Gọi \(N' = BC \cap \left( P \right)\). Theo định lí Ta-lét, ta có:
\({{CN'} \over {N'B}} = {{SK} \over {K{\rm{A}}}} = 1 \Rightarrow CN' = N'B\)
do đó N’ là trung điểm của BC, tức N’ ≡ N
Vậy mp(P) qua điểm N.
c) Kéo dài MK cắt AC tại I; nối IN cắt BA tại J. Vậy tứ giác MNJK là thiết diện cần tìm.
d) Gọi O là giao điểm của KN và MJ thì O là giao điểm của mp(P) với JM. Ba mặt phẳng song song (R), (P), (Q) lần lượt cắt SA và MJ tại các điểm S, K, A và M, O, J. Theo định lí Ta-lét, ta có O là trung điểm của MJ (do K là trung điểm của SA). Từ đó, dễ thấy
\({S_{K{\rm{O}}M}} = {S_{K{\rm{O}}J}};{S_{NMO}} = {S_{NOJ}}\).
Vậy \({S_{MKN}} = {S_{JKN}}\) tức là đường thẳng KN chia thiết diện thành hai phần có diện tích bằng nhau.
Chủ đề 2: Kĩ thuật chuyền, bắt bóng và đột phá
Chuyên đề 2: Một số vấn đề về pháp luật dân sự
Chủ đề 1. Xây dựng và phát triển nhà trường
Review Unit 8
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11