ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho dãy số (un) xác định bởi

\({u_1} = 3\,\text{ và }\,{u_{n + 1}} = {u_n} + 5\) với mọi \(n ≥ 1\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Hãy tính u2, u4 và u6.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {u_2} = {u_1} + 5 = 8 \cr 
& {u_3} = {u_2} + 5 = 13 \cr 
& {u_4} = {u_3} + 5 = 18 \cr 
& {u_5} = {u_4} + 5 = 23 \cr 
& {u_6} = {u_5} + 5 = 28 \cr} \)

LG b

Chứng minh rằng \(u_n= 5n – 2\) với mọi \(n ≥ 1\).

Lời giải chi tiết:

Ta sẽ chứng minh : \(u_n= 5n – 2\) (1) với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.

+) Với \(n = 1\), ta có \(u_1= 3 = 5.1 – 2\)

Vậy (1) đúng khi \(n = 1\).

+) Giả sử (1) đúng với \(n = k, k\in \mathbb N^*\), tức là:

\(u_k=5k-2\)

+) Ta sẽ chứng minh (1) cũng đúng khi \(n = k + 1\)

Thật vậy, từ công thức xác định dãy số (un) và giả thiết qui nạp ta có :

\({u_{k + 1}} = {u_k} + 5 \)

\(= 5k - 2 + 5 = 5\left( {k + 1} \right) - 2\)

Do đó (1) đúng với mọi \(n \in \mathbb N^*\).

Cách khác:

Ta có:

\(\begin{array}{l}
{u_n} = {u_{n - 1}} + 5\\
{u_{n - 1}} = {u_{n - 2}} + 5\\
...\\
{u_3} = {u_2} + 5\\
{u_2} = {u_1} + 5\\
\Rightarrow {u_n} + {u_{n - 1}} + ... + {u_3} + {u_2}\\
= \left( {{u_{n - 1}} + 5} \right) + \left( {{u_{n - 2}} + 5} \right) + ...\\
+ \left( {{u_2} + 5} \right) + \left( {{u_1} + 5} \right)\\
\Rightarrow {u_n} + {u_{n - 1}} + ... + {u_3} + {u_2}\\
= {u_{n - 1}} + {u_{n - 2}} + ... + {u_2} + {u_1}\\
+ \left( {5 + 5 + ... + 5 + 5} \right)(\text{ n-1 số 5})\\
\Rightarrow {u_n} = {u_1} + 5.\left( {n - 1} \right)\\
\Rightarrow {u_n} = 3 + 5n - 5 = 5n - 2
\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved