Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(4; -1; 2), B(1; 2; 2) và C(1; -1; 5).
LG a
Chứng minh rằng ABC là tam giác đều.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \overrightarrow {AB} = \left( { - 3,3,0} \right),\overrightarrow {AC} = \left( { - 3,0,3} \right),\overrightarrow {BC} = \left( {0, - 3,3} \right) \cr
& \Rightarrow AB = \sqrt {{{\left( { - 3} \right)}^2} + {3^2} + {0^2}} = 3\sqrt 2 \cr
& AC = 3\sqrt 2 \cr
& BC = 3\sqrt 2 \cr
& \Rightarrow AB = BC = AC = 3\sqrt 2 . \cr} \)
Vậy tam giác ABC đều.
LG b
Viết phương trình mp(ABC). Tính thể tích khối tứ diện giới hạn bởi mp(ABC) và các mặt phẳng tọa độ.
Lời giải chi tiết:
Ta có:
(ABC) đi qua A và nhận \(\overrightarrow n = \left( {1;1;1} \right)\) là 1 vectơ pháp tuyến nên (ABC) có phương trình: \(\left( {x - 4} \right) + \left( {y + 1} \right) + \left( {z - 2} \right) = 0 \Leftrightarrow x + y + z - 5 = 0.\)
Mặt phẳng (ABC) cắt với trục Ox tại điểm A’(5; 0; 0)
Mặt phẳng (ABC) cắt trục Oy tại điểm B’(0; 5; 0)
Mặt phẳng (ABC) cắt trục Oz tại điểm C’(0; 0; 5).
Khi đó khối tứ diện giới hạn bởi mặt phẳng (ABC) và các mặt phẳng tọa độ là tứ diện OA’B’C’ và \({V_{OA'B'C'}} = {1 \over 6}OA'.OB'.OC' = {1 \over 6}.5.5.5 = {{125} \over 6}.\)
LG c
Viết phương trình trục của đường tròn ngoại tiếp tam giác ABC.
Lời giải chi tiết:
Gọi I(a, b, c) là tâm đường tròn ngoại tiếp tam giác ABC ta có:
\(\eqalign{
& \left\{ \matrix{
IA = IB \Leftrightarrow I{A^2} = I{B^2} \Leftrightarrow {\left( {a - 4} \right)^2} + {\left( {b + 1} \right)^2} + {\left( {c - 2} \right)^2} = {\left( {a - 1} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} \hfill \cr
IA = IC \Leftrightarrow I{A^2} = I{C^2} \Leftrightarrow {\left( {a - 4} \right)^2} + {\left( {b + 1} \right)^2} + {\left( {c - 2} \right)^2} = {\left( {a - 1} \right)^2} + {\left( {b + 1} \right)^2} + {\left( {c - 5} \right)^2} \hfill \cr
I \in \left( {ABC} \right) \Rightarrow a + b + c - 5 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- 8a + 16 + 2b + 1 = - 2a + 1 - 4b + 4 \hfill \cr
- 8a + 16 + 2b + 1 - 4c + 4 = - 2a + 1 + 2b + 1 - 10c + 25 \hfill \cr
a + b + c - 5 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
6a - 6b = 12 \hfill \cr
6a - 6c = - 6 \hfill \cr
a + b + a = 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a - b = 2 \hfill \cr
a - c = - 1 \hfill \cr
a + b + c = 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 2 \hfill \cr
b = 0 \hfill \cr
c = 3 \hfill \cr} \right. \Rightarrow I\left( {2,0,3} \right). \cr} \)
Trục của đường tròn ngoại tiếp tam giác ABC là đường thẳng đi qua I và vuông góc với (ABC) nên trục đó đi qua I(2; 0; 3) và nhận \(\overrightarrow n = \left( {1,1,1} \right)\) là 1 vectơ chỉ phương.
Do đó trục của đường tròn ngoại tiếp tam giác ABC có phương trình:
\(\left\{ \matrix{
x = 2 + t \hfill \cr
y = t \hfill \cr
z = 3 + t \hfill \cr} \right.\,\,\left( \Delta \right)\)
LG d
Tìm tọa độ điểm D sao cho ABCD là tứ diện đều.
Lời giải chi tiết:
Để ABCD là tứ diện đều thì \(D \in \left( \Delta \right) \Rightarrow D\left( {2 + t,t,3 + t} \right).\)
Và \(DA = AB = 3\sqrt 2 \Leftrightarrow D{A^2} = 18.\)
\(\eqalign{
& \Leftrightarrow {\left( {t - 2} \right)^2} + {\left( {t + 1} \right)^2} + {\left( {t + 1} \right)^2} = 18 \cr
& \Leftrightarrow 3{t^2} = 12 \Leftrightarrow \left[ \matrix{
t = 2 \hfill \cr
t = - 2 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
D\left( {4,2,5} \right) \hfill \cr
D\left( {0, - 2,1} \right) \hfill \cr} \right.. \cr} \)
Vậy có hai điểm D để ABCD là tứ diện đều là \(D\left( {4,2,5} \right)\) hoặc \(D\left( {0, - 2,1} \right)\).