Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ABCD. Lấy các điểm M và N lần lượt thuộc các đường thẳng BC và AD sao cho \(\overrightarrow {MB} = k\overrightarrow {MC} \) và \(\overrightarrow {NA} = k\overrightarrow {ND} \) với k là số thực khác 0 cho trước. Đặt α là góc giữa hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {BA} \) ; β là góc giữa hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {C{\rm{D}}} \). Tìm mối liên hệ giữa AB và CD để \(\alpha = \beta = {45^0}\).
Lời giải chi tiết
Kẻ MP // AB thì dễ thấy NP // CD. Từ đó, góc giữa \(\overrightarrow {MN} \) và \(\overrightarrow {BA} \) bằng góc giữa \(\overrightarrow {MN} \) và \(\overrightarrow {MP} \), đó là góc \(\widehat {PMN}\). Góc giữa \(\overrightarrow {MN} \) và \(\overrightarrow {C{\rm{D}}} \) bằng góc giữa \(\overrightarrow {MN} \) và \(\overrightarrow {PN} \), đó là góc \(\widehat {PNM}\).
Vậy hai góc trên bằng nhau và bằng 45° khi và chỉ khi:
MP = NP và \(\widehat {MPN} = {90^0}\)
Từ đó, suy ra \({{CP} \over {CA}}.AB = {{AP} \over {AC}}.C{\rm{D}}\) và \(AB \bot C{\rm{D}}\)
hay \({{AB} \over {C{\rm{D}}}} = {{AP} \over {CP}}\) và \(AB \bot C{\rm{D}}\)
Mặt khác, ta có \(\overrightarrow {PA} = k\overrightarrow {PC} \Rightarrow {{AP} \over {PC}} = \left| k \right|\) .
Vậy giữa AB và CD có mối liên hệ
\({{AB} \over {C{\rm{D}}}} = \left| k \right|\) và \(AB \bot C{\rm{D}}\)
thì góc giữa hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {BA} \) bằng góc giữa hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {C{\rm{D}}} \), cùng bằng 45°).
CHƯƠNG 1: ĐIỆN TÍCH - ĐIỆN TRƯỜNG
Chủ đề 4: Kĩ thuật bỏ nhỏ
Phần một. CÔNG DÂN VỚI KINH TẾ
Phần hai: Giáo dục pháp luật
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11