Viết phương trình tiếp tuyến của đồ thị hàm số
LG a
\(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0
Phương pháp giải:
Phương trình tiếp tuyến tại điểm \(M(x_0;y_0)\) là:
\(y-y_0=f'(x_0)(x-x_0)\)
Lời giải chi tiết:
\(\eqalign{ & f\left( x \right) = {{x - 1} \over {x + 1}} \cr & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) = - 1 \cr & f'\left( x \right) \cr & = \frac{{\left( {x - 1} \right)'\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} \cr &= \frac{{x + 1 - x + 1}}{{{{\left( {x + 1} \right)}^2}}}\cr & = {2 \over {{{\left( {x + 1} \right)}^2}}} \cr &\Rightarrow f'\left( 0 \right) = 2 \cr} \)
Phương trình tiếp tuyến cần tìm là :
\(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\)
LG b
\(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.
Lời giải chi tiết:
\(\eqalign{ & f\left( x \right) = \sqrt {x + 2} \cr &f\left( {{x_0}} \right) = 2 \Leftrightarrow \sqrt {{x_0} + 2} = 2 \cr &\Leftrightarrow {x_0} = 2 \cr & f'\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f'\left( 2 \right) = {1 \over 4} \cr} \)
Phương trình tiếp tuyến cần tìm là :
\(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Chương 9. Anđehit - Xeton - Axit Cacboxylic
Unit 7: Ecological systems
Chuyên đề 11.1: Một số vấn đề về khu vực Đông Nam Á
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11