Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Chứng minh rằng đồ thị của hai hàm số \(y = {a^x}\) và \(y = - {\log _a}\left( { - x} \right)\) đối xứng với nhau qua đường thẳng \(y = -x\).
Lời giải chi tiết
Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị của các hàm số \(y = {a^x}\) và \(y = - {\log _a}\left( { - x} \right)\).
\(M\left( {{x_0};{y_0}} \right)\) là một điểm bất kì. Khi đó điểm đối xứng với M qua đường thẳng \(y = - x\) là \(M'\left( { - {y_0};{-x_0}} \right)\). Ta có
\(M \in \left( {{G_1}} \right) \Leftrightarrow {y_0} = {a^{{x_0}}} \Leftrightarrow {x_0} = {\log _a}{y_0} \)
\(\Leftrightarrow - {x_0} = - \log \left[ { - \left( { - {y_0}} \right)} \right] \Leftrightarrow M' \in \left( {{G_2}} \right)\)
Điều đó chứng tỏ \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua đường thẳng \(y = - x\).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 12
Đặc điểm chung của tự nhiên
Đề thi học kì 2 của các trường có lời giải – Mới nhất
Lý thuyết Ngữ Văn
CHƯƠNG 1. ESTE - LIPIT