ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 29 trang 41 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình sau trên khoảng đã cho rồi dùng bảng số hoặc máy tính bỏ túi để tính gần đúng nghiệm của chúng (tính chính xác đến hàng phần trăm):

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

LG a

\(3\cos 2x + 10\sin x + 1 = 0\) trên \(\left( { - {\pi \over 2};{\pi \over 2}} \right)\)

Lời giải chi tiết:

Ta có:

\(\eqalign{& 3\cos 2x + 10\sin x + 1 = 0 \cr & \Leftrightarrow 3\left( {1 - 2{{\sin }^2}x} \right) + 10\sin x + 1 = 0\cr& \Leftrightarrow - 6{\sin ^2}x + 10\sin x + 4 = 0 \cr&\Leftrightarrow \left[ {\matrix{{\sin x = - {1 \over 3}} \cr {\sin x = 2\,\left( {\text{ loại }} \right)} \cr} } \right. \cr} \)

\( \Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \left( { - \frac{1}{3}} \right) + k2\pi \\
x = \pi - \arcsin \left( { - \frac{1}{3}} \right) + k2\pi
\end{array} \right.\)

Với \(x = \arcsin \left( { - \frac{1}{3}} \right) + k2\pi \) thì do \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) nên:

\(\begin{array}{l}
- \frac{\pi }{2} < \arcsin \left( { - \frac{1}{3}} \right) + k2\pi < \frac{\pi }{2}\\
\Leftrightarrow - \frac{\pi }{2} - \arcsin \left( { - \frac{1}{3}} \right) < k2\pi < \frac{\pi }{2} - \arcsin \left( { - \frac{1}{3}} \right)\\
\Rightarrow - 1,23 < k2\pi < 1,91\\
\Rightarrow - 0,196 < k < 0,3\\
\Rightarrow k = 0\\
\Rightarrow x = \arcsin \left( { - \frac{1}{3}} \right) = - 0,34
\end{array}\)

Với \(x =\pi - \arcsin \left( { - \frac{1}{3}} \right) + k2\pi \) thì do \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) nên:

\(\begin{array}{l}
- \frac{\pi }{2} < \pi - \arcsin \left( { - \frac{1}{3}} \right) + k2\pi < \frac{\pi }{2}\\
\Leftrightarrow - \frac{\pi }{2} - \pi + \arcsin \left( { - \frac{1}{3}} \right) < k2\pi < \frac{\pi }{2} - \pi + \arcsin \left( { - \frac{1}{3}} \right)\\
\Rightarrow - 5,05 < k2\pi < - 1,91\\
\Rightarrow - 0,8 < k < - 0,3
\end{array}\)

Vì k nguyên nên không có k thỏa mãn TH này.

Vậy phương trình có nghiệm gần đúng thỏa mãn là \(x ≈ -0,34\)

LG b

LG b

\(4\cos 2x + 3 = 0\) trên \(\left( {0;{\pi \over 2}} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}
4\cos 2x + 3 = 0\\
\Leftrightarrow \cos 2x = - \frac{3}{4}\\
\Leftrightarrow 2x = \pm \arccos \left( { - \frac{3}{4}} \right) + k2\pi \\
\Leftrightarrow x = \pm \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) + k\pi
\end{array}\)

Với \(x = \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) + k\pi \) ta có:

\(0 < x < \frac{\pi }{2}\)

\(\begin{array}{l} \Leftrightarrow 0 < \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) + k\pi  < \frac{\pi }{2}\\ \Leftrightarrow  - \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) < k\pi  < \frac{\pi }{2} - \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right)\\ \Rightarrow  - 1,21 < k\pi  < 0,36\\ \Rightarrow  - 0,39 < k < 0,115\\ \Rightarrow k = 0\\ \Rightarrow x = \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) \approx 1,21\end{array}\)

Với \(x =  - \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) + k\pi \) ta có:

\(0 < x < \frac{\pi }{2}\)

\(\begin{array}{l} \Leftrightarrow 0 <  - \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) + k\pi  < \frac{\pi }{2}\\ \Leftrightarrow \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right) < k\pi  < \frac{\pi }{2} + \frac{1}{2}\arccos \left( { - \frac{3}{4}} \right)\\ \Rightarrow 1,21 < k\pi  < 2,78\\ \Rightarrow 0,38 < k < 0,88\end{array}\)

Do dó không có k trong TH này.

Vậy \(x  \approx 1,21\).

 

LG c

LG c

\({\cot ^2}x - 3\cot x - 10 = 0\) trên \(\left( {0;\pi } \right)\)

Lời giải chi tiết:

\({\cot ^2}x - 3\cot x - 10 = 0\)

\(\Leftrightarrow \left[ {\matrix{{\cot x = 5} \cr {\cot x = - 2} \cr} } \right.\)

Nghiệm gần đúng của phương trình trong khoảng \((0; π)\) là \(x ≈ 0,2; x ≈ 2,68\)

LG d

LG d

\(5 - 3\tan 3x = 0\) trên \(\left( { - {\pi \over 6};{\pi \over 6}} \right)\)

Lời giải chi tiết:

\(x \in \left( { - {\pi \over 6};{\pi \over 6}} \right) \Leftrightarrow 3x \in \left( { - {\pi \over 2};{\pi \over 2}} \right).\) Với điều kiện đó, ta có :

\(5 - 3\tan 3x = 0 \Leftrightarrow \tan 3x = {5 \over 3} \)

\(\Leftrightarrow 3x = \beta \Leftrightarrow x = {\beta \over 3},\) 

Trong đó \(β\) là số thực thuộc khoảng \(\left( { - {\pi \over 2};{\pi \over 2}} \right)\) thỏa mãn \(\tan \beta = {5 \over 3};\) bảng số hoặc máy tính cho ta \(β ≈ 1,03\). Vậy nghiệm gần đúng của phương trình là \(x ≈ 0,34\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved