Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình lăng trụ ABC. A’B’C’. Gọi I và J lần lượt là trung điểm của BB’ và A’C’. Điểm K thuộc B’C’ sao cho \(\overrightarrow {KC'} = - 2\overrightarrow {KB'} \) . Chứng minh rằng bốn điểm A, I, J, K cùng thuộc một mặt phẳng.
Lời giải chi tiết
Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c .\)
Ta có:
\(\eqalign{ & \overrightarrow {AI} = {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AB'} } \right) \cr & = {1 \over 2}\left( {\overrightarrow b + \overrightarrow a + \overrightarrow b } \right) \cr & = {1 \over 2}\left( {\overrightarrow a + 2\overrightarrow b } \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr & \overrightarrow {AJ} = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) \cr & = {1 \over 2}\left( {\overrightarrow a + \overrightarrow a + \overrightarrow c } \right) \cr & = {1 \over 2}\left( {2\overrightarrow a + \overrightarrow c } \right).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr & \overrightarrow {AK} = {{\overrightarrow {AC'} + 2\overrightarrow {AB'} } \over 3} \cr & = {{\overrightarrow a + \overrightarrow c + 2\left( {\overrightarrow a + \overrightarrow b } \right)} \over 3} \cr & = {{3\overrightarrow a + 2\overrightarrow b + \overrightarrow c } \over 3}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)
Từ (1), (2), (3) ta có \(\overrightarrow {AK} = {2 \over 3}\left( {\overrightarrow {AI} + \overrightarrow {AJ} } \right)\)
Vậy \(\overrightarrow {AI} ,\overrightarrow {AJ} ,\overrightarrow {AK} \) đồng phẳng, tức là các điểm A, I, J, K cùng thuộc một mặt phẳng.
Chú ý: Có thể chứng minh các điểm A, I, J, K thuộc một mặt phẳng bằng cách chứng minh AI và JK cắt nhau tại điểm M.
Chủ đề 1: Vai trò, tác dụng của môn bóng chuyền đối với sự phát triển thể chất - một số điều luật thi đấu môn bóng chuyền
Review Unit 1
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Chương IV. Dòng điện không đổi
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11