Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình tứ diện ABCD; I và J lần lượt là trung điểm của AB và CD; M là điểm thuộc AC sao cho \(\overrightarrow {MA} = {k_1}\overrightarrow {MC} \) ; N là điểm thuộc BD sao cho \(\overrightarrow {NB} = {k_2}\overrightarrow {N{\rm{D}}} \) . Chứng minh rằng các điểm I, J, M, N cùng thuộc một mặt phẳng khi và chỉ khi k1 = k2.
Lời giải chi tiết
Vì \(\overrightarrow {MA} = {k_1}\overrightarrow {MC} \)
nên \(\overrightarrow {IM} = {{\overrightarrow {IA} - {k_1}\overrightarrow {IC} } \over {1 - {k_1}}}\)
Tương tự, ta có:
\(\overrightarrow {IN} = {{\overrightarrow {IB} - {k_2}\overrightarrow {I{\rm{D}}} } \over {1 - {k_2}}} = {{ - \overrightarrow {IA} - {k_2}\overrightarrow {I{\rm{D}}} } \over {1 - {k_2}}}\)
Mặt khác: \(\overrightarrow {IJ} = {1 \over 2}\left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\)
Để các điểm I, I, M, N thuộc một mặt phẳng, điều kiện cần và đủ là ba vectơ \(\overrightarrow {IM} ,\overrightarrow {IN} ,\overrightarrow {IJ} \) đồng phẳng. Rõ ràng là \(\overrightarrow {IN} \) và \(\overrightarrow {IJ} \) không cùng phương nên điều khẳng định \(\overrightarrow {IM} ,\overrightarrow {IN} ,\overrightarrow {IJ} \) đồng phẳng tương đương với
\(\overrightarrow {IM} = p\overrightarrow {IN} + q\overrightarrow {IJ} \)
hay
\(\eqalign{ & {{\overrightarrow {IA} - {k_1}\overrightarrow {IC} } \over {1 - {k_1}}} = p.{{ - \overrightarrow {IA} - {k_2}\overrightarrow {ID} } \over {1 - {k_2}}} + {q \over 2}\left( {\overrightarrow {IC} + \overrightarrow {ID} } \right) \cr & \Leftrightarrow \left( {{1 \over {1 - {k_1}}} + {p \over {1 - {k_2}}}} \right)\overrightarrow {IA} - \left( {{{{k_1}} \over {1 - {k_1}}} + {q \over 2}} \right)\overrightarrow {IC} \cr& + \left( {{{p{k_2}} \over {1 - {k_2}}} - {q \over 2}} \right)\overrightarrow {ID} = \overrightarrow 0 \cr} \)
Do \(\overrightarrow {IA} ,\overrightarrow {IC} ,\overrightarrow {ID} \) không đồng phẳng nên đẳng thức trên tương đương với
\(\eqalign{ & \left\{ \matrix{ {1 \over {1 - {k_1}}} + {p \over {1 - {k_2}}} = 0 \hfill \cr {{{k_1}} \over {1 - {k_1}}} + {q \over 2} = 0 \hfill \cr {{p{k_2}} \over {1 - {k_2}}} - {q \over 2} = 0 \hfill \cr} \right. \cr & \Rightarrow {{{k_1}} \over {1 - {k_1}}} = - {{p{k_2}} \over {1 - {k_2}}} = {{{k_2}} \over {1 - {k_1}}} \cr} \)
hay k1 = k2
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 2
Bài 3. Một số vấn đề mang tính chất toàn cầu - Tập bản đồ Địa lí 11
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VIII - Hóa học 11
Chủ đề 2. Làm chủ cảm xúc và các mối quan hệ
Chủ đề 2. Khám phá bản thân
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11