Đề bài
Cho hai đường tròn (O) và (O') có bán kính khác nhau, tiếp xúc ngoài với nhau tại A. Một đường tròn (O") thay đổi, luôn luôn tiếp xúc ngoài với (O) và (O') lần lượt tại B và C . Chứng minh rằng đường thẳng BC luôn đi qua một điểm cố định
Lời giải chi tiết
Cách 1:
Kéo dài BC cắt (O’) tại B’
Vì C là tâm vị tự trong của (O’) và (O”) nên hai vecto \(\overrightarrow {O'B'} \) và \(\overrightarrow {O''B} \) ngược hướng
Vì B là tâm vị tự trong của (O) và (O”) nên hai vecto \(\overrightarrow {O''B} \) và \(\overrightarrow {OB} \) ngược hướng
Vậy hai vecto \(\overrightarrow {OB} \) và \(\overrightarrow {O'B'} \) cùng hướng
(cùng ngược hướng với \(\overrightarrow {O''B} \))
Từ đó suy ra đường thẳng BB’, cũng chính là đường thẳng BC, luôn đi qua điểm cố định là tâm vị tự ngoài I của (O) và (O’)
Cách 2:
Kéo dài BC cắt (O') tại B', cắt OO' tại I. Ta chứng minh I là điểm cố định.
Ta có: \( \angle OBI =\angle O''BC \) (hai góc đối đỉnh)
\( \angle O''BC = \angle O''CB \) ( tam giác O''BC cân tại O'')
\( \angle O''CB =\angle O'CB' \) (hai góc đối đỉnh)
\( \angle O'CB' = \angle O'B'C = \angle O'B'I \)
\(\Rightarrow \angle OBI= \angle O'B'I\). Mà 2 góc này ở vị trí đồng vị.
\(\Rightarrow OB // O'B' \Rightarrow {{IO} \over{IO'}}= {OB \over O'B'}\) cố định
Do đó I là tâm vị tự biến O thành O' tỉ số \({OB \over O'B'}\)
Vậy BC luôn đi qua điểm I cố định
Chuyên đề I. Trường hấp dẫn
Chương 3: Đại cương hóa học hữu cơ
Unit 2: Get well
Chương 6. Chương trình con và lập trình có cấu trúc
Chủ đề 4. Sản xuất cơ khí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11