Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) bất kì không đi qua S, cắt các cạnh bên SA, SB, SC, SD lần lượt tại các điểm \({A_1},{B_1},{C_1},{D_1}\) . Dùng phương pháp vectơ, chứng minh rằng
\({{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}}\)
Lời giải chi tiết
Vì ABCD là hình bình hành nên
\(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {S{\rm{D}}} \)
hay \(\overrightarrow {S{\rm{D}}} = \overrightarrow {SA} + \overrightarrow {SC} - \overrightarrow {SB} \)
Đặt
\(\eqalign{ & \overrightarrow {SA} = a\overrightarrow {S{A_1}} ,\overrightarrow {SB} = b\overrightarrow {S{B_1}} , \cr & \overrightarrow {SC} = c\overrightarrow {S{C_1}} ,\overrightarrow {S{\rm{D}}} = d\overrightarrow {S{{\rm{D}}_1}} \cr} \)
(với a, b, c, d là các số lớn hơn 1)
Khi đó:
\(\eqalign{ & {{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = a + c \cr & {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}} = b + d \cr} \)
và
\(\eqalign{ & \overrightarrow {S{{\rm{D}}_1}} = {1 \over d}.\overrightarrow {S{\rm{D}}} = {1 \over d}\left( {\overrightarrow {SA} + \overrightarrow {SC} - \overrightarrow {SB} } \right) \cr & = {1 \over d}\left( {a\overrightarrow {S{A_1}} + c\overrightarrow {S{C_1}} - b\overrightarrow {S{B_1}} } \right) \cr & = {a \over d}.\overrightarrow {S{A_1}} + {c \over d}.\overrightarrow {S{C_1}} - {b \over d}.\overrightarrow {S{B_1}} \cr} \)
Mặt khác các điểm \({A_1},{B_1},{C_1},{D_1}\) thuộc mặt phẳng, nên từ đẳng thức đó suy ra
\({a \over d} + {c \over d} - {b \over d} = 1\)
tức là a + c = b + d
Như vậy \({{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}}\).
Unit 3: Cities
Chủ đề 7: Chiến thuật thi đấu đơn
Bài 2: Sự điện li trong dung dịch nước. Thuyết Bronsted - Lowry về acid - base
Unit 4: Preserving World Heritage
Chủ đề 1. Giới thiệu chung về cơ khí chế tạo
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11