Đề bài
Giả sử f và g là hai hàm,f số xác định trên khoảng (a ; b) có thể trừ điểm \({x_0} \in \left( {a;b} \right).\) Chứng minh rằng nếu
\(\left| {f\left( x \right)} \right| \le \left| {g\left( x \right)} \right|\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\},\) và \(\mathop {\lim }\limits_{x \to 0} g\left( x \right) = 0\)
Thì
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 0\)
Lời giải chi tiết
Hãy chứng minh rằng, với mọi dãy số \(({x_n})\) trong \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) sao cho \(\lim {x_n} = {x_0},\) ta có \(\lim f\left( {{x_n}} \right) = 0.\)
Chủ đề 2: Kĩ thuật di chuyển và chuyền bóng
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 11
Unit 4: Planet Earth
Unit 3: Cities of the future
CHƯƠNG IV. SINH SẢN - SINH HỌC 11 NÂNG CAO
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11