Đề bài
Chứng minh rằng \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 1\) nếu
\(1 \le f\left( x \right) \le {x^2} - 4x + 5\) với \(0 < \left| {x - 2} \right| < 1.\)
Phương pháp giải - Xem chi tiết
Điều cần chứng minh suy ra từ bất đẳng thức:
\(0 \le f\left( x \right) \le {x^2} - 4x + 4\) với \(0 < \left| {x - 2} \right| < 1.\)
Lời giải chi tiết
\(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 1\)
Review (Units 3 - 4)
Unit 4: Home
Chủ đề 3. Công nghệ thức ăn chăn nuôi
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TIẾP THEO)
Chủ đề 4. Tổ chức cuộc sống gia đình và tài chính cá nhân
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11