Cho hàm số
\(f\left( x \right) = {{m{x^3}} \over 3} - {{m{x^2}} \over 2} + \left( {3 - m} \right)x - 2\)
Tìm m để
LG a
\(f'\left( x \right)\) với mọi x;
Lời giải chi tiết:
Với mọi \(x \in R,\) ta có
\(f'\left( x \right) = m{x^2} - mx + 3 - m.\)
Ta phải xét hai trường hợp sau đây
1. Với \(m = 0\) thì \(f'\left( x \right) = 3 > 0\,\,\,\left( {\forall x \in R} \right).\) Vậy \(m = 0\) là một giá trị cần tìm.
2. Với \(m \ne 0\) (khi đó \(f'(x)\) là một tam thức bậc hai) thì ta phải tìm \(m\) sao cho
\(\left\{ \matrix{m > 0 \hfill \cr\Delta = {m^2} - 4\left( {3 - m} \right) = m\left( {5m - 12} \right) < 0 \hfill \cr} \right.\)
\(\Leftrightarrow 0 < m < {{12} \over 5}\)
Vậy các giá trị của \(m\) thỏa mãn điều kiên của bài toán là \(0 \le m < {{12} \over 5}.\)
Chú ý. Không được phép hai trường hợp 1 và 2 (vì trong trường hợp 1, \(f\left( x \right)\) không phải là một tam thức bậc hai nên không áp đụngk được định lí về dấu của tam thức bậc hai).
LG b
\(f'\left( x \right)\) có hai nghiệm phân biệt cùng dấu;
Lời giải chi tiết:
Để \(f'(x)\) có hai nghiệm phân biệt cùng dấu thì phải tìm \(m\) sao cho tam thức bậc haicó hai nghiệm phân biệt và tích của chúng là \(P = {c \over a} > 0\) (hay số 0 nằm ngoài hai nghiệm) tức là
\(\left\{ \matrix{m \ne 0 \hfill \cr\Delta = m\left( {5m - 12} \right) > 0 \hfill \cr{{3 - m} \over m} > 0\,\,\,\left( {hay\,\,m\left( {3 - m} \right) > 0} \right) \hfill \cr} \right.\)
\(\Leftrightarrow {{12} \over 5} < m < 3.\)
LG c
Chứng minh rằng trong trường hợp có hai nghiệm(hai nghiệm có thể trùng nhau) thì các nghiệm thỏa mãn một hệ thức độc lập với m.
Lời giải chi tiết:
Vì có hai nghiệm (hai nghiệm có thể trùng nhau) nên ta có
\(\left\{ \matrix{m \ne 0 \hfill \cr\Delta \ge 0 \hfill \cr{x_1} + {x_2} = {m \over m} = 1 \hfill \cr{x_1}{x_2} = {{3 - m} \over m} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{m < 0\text{ hoặc }m \ge {2 \over 5} \hfill \cr{x_1} + {x_2} = 1. \hfill \cr} \right.\)
Vậy hệ thức phải tìm là \({x_1} + {x_2} = 1.\)
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Bài 17: Phenol
Unit 2: Personnal Experiences - Kinh nghiệm cá nhân
Tải 10 đề kiểm tra 15 phút - Chương IX - Hóa học 11
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11