Đề bài
Giải và biện luận phương trình \(f'\left( x \right) = 0\) biết rằng
\(f\left( x \right) = 2\sin x + 2\left( {1 - 2m} \right)\cos x - 2mx\)
Lời giải chi tiết
Với mọi \(x \in R\), ta có
\(\eqalign{& f'\left( x \right) = 2\cos 2x - 2\left( {1 - 2m} \right)\sin x - 2m \cr& f'\left( x \right) = 0 \cr&\Leftrightarrow \left( {1 - 2{{\sin }^2}x} \right) - \left( {1 - 2m} \right)\sin x - m = 0 \cr& \Leftrightarrow 2{\sin ^2}x + \left( {1 - 2m} \right)\sin x + m-1=0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \)
Ta có \(\Delta = {\left( {1 - 2m} \right)^2} - 8m + 8 \)
\(= 4{m^2} - 12m + 9 = {\left( {2m - 3} \right)^2}\)
Vậy
\(\left( 1 \right) \Leftrightarrow \left[ \matrix{\sin x = {{\left( {2m - 1} \right) - \left( {2m - 3} \right)} \over 4} = {1 \over 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr\sin x = {{\left( {2m - 1} \right) + \left( {2m - 3} \right)} \over 4} = m - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \hfill \cr} \right.\)
Giải (2), ta được
\(\sin x = {1 \over 2} = \sin {\pi \over 6} \Leftrightarrow \left[ \matrix{x = {\pi \over 6} + k2\pi \hfill \cr x = {{5\pi } \over 6} + k2\pi . \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)
\( \bullet \) Giải (3), với điều kiện \( - 1 \le m - 1 \le 1\,\,\,hay\,\,0 \le m \le 2,\) ta được
\(\sin x = m - 1 = \sin \alpha \Leftrightarrow \left[ \matrix{x = \alpha + k2\pi \hfill \cr x = \pi - \alpha + k2\pi \hfill \cr} \right.\,\,\,\,\,\,\,(5)\)
Kết luận
a) Nếu \(m < 0\) hoặc \(m > 2\) thì phương trình \(f'\left( x \right) = 0\) có các nghiệm là (4)
b) Nếu \(0 \le m \le 2\) thì phương trình \(f'\left( x \right) = 0\) có các nghiệm là (4) và (5).
Chủ đề 1: Những vấn đề chung
Chuyên đề 11.3: Cuộc Cách mạng công nghiệp lần thứ tư (4.0)
Bài 5. Tiết 2: Một số vấn đề của Mĩ La Tinh - Tập bản đồ Địa lí 11
Chủ đề 4: Kĩ thuật dừng bóng
Chủ đề 2: Kĩ thuật chuyền, bắt bóng và đột phá
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11