Đề bài
Cho hàm số
\(y = f\left( x \right) = {1 \over {x\sqrt 2 }}\) và \(y = g\left( x \right) = {{{x^2}} \over {\sqrt 2 }}\)
Viết phương trình tiếp tuyến của đồ thị hai hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.
Lời giải chi tiết
Hoành độ giao điểm hai đồ thị của haio hàm số đã cho là
\({1 \over {x\sqrt 2 }} = {{{x^2}} \over {\sqrt 2 }} \Leftrightarrow {x^3} = 1 \Leftrightarrow x = 1\)
Tung độ giao điểm tương ứng là \(y = {1 \over {\sqrt 2 }}\)
Ta có
\( \bullet \) \(f'\left( x \right) = {{ - 1} \over {\sqrt 2 .{x^2}}},\) suy ra \(f'\left( 1 \right) = - {1 \over {\sqrt 2 }}\)
Vậy phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại giao điểm là
\(y = - {1 \over {\sqrt 2 }}\left( {x - 1} \right) + {1 \over {\sqrt 2 }}\,\,\,hay\,\,y = - {1 \over {\sqrt 2 }}\left( {x - 2} \right)\)
\( \bullet \) \(g'\left( x \right) = x\sqrt 2 ,\,\,suy\,ra\,\,g'\left( 1 \right) = \sqrt 2 \)
Vậy phương trình tiếp tuyến của đồ thị hàm số \(y = g\left( x \right)\) tại giao điểm là
\(y = \sqrt 2 \left( {x - 1} \right) + {1 \over {\sqrt 2 }}\,\,hay\,\,y = \sqrt 2 x - {1 \over {\sqrt 2 }}\)
Mặt khác \(f'\left( 1 \right).g'\left( 1 \right) = - {1 \over {\sqrt 2 }}.\sqrt 2 = - 1\)
Nên hai tiếp tuyến của đò thị hàm số đã cho vuông góc với nhau, suy ra góc giữa hai tiếp tuyến đó bằng \({90^0}\).
Chủ đề 4. Trách nhiệm với gia đình
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VII - Hóa học 11
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 11
Đề thi học kì 2 mới nhất có lời giải
Unit 10: Nature In Danger - Thiên nhiên đang lâm nguy
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11