Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Chứng minh rằng nếu a và b là hai số dương thỏa mãn a2 + b2 = 7ab thì
\({\log _7}{{a + b} \over 3} = {1 \over 2}(\log_7a + \log _7b)\)
Phương pháp giải:
Biến đổi tương đương đẳng thức càn CM đưa về đẳng thức luôn đúng.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& {\log _7}{{a + b} \over 3} = {1 \over 2}(\log_7a + \log _7b) \cr
& \Leftrightarrow 2\log _7{{a + b} \over 3} = {\log _7}(ab) \cr
& \Leftrightarrow {({{a + b} \over 3})^2} = ab \cr
& \Leftrightarrow {a^2} + 2ab + {b^2} = 9ab \cr &\Leftrightarrow {a^2} + {b^2} = 7ab\,\,(đpcm) \cr} \)
LG b
Biết a và b là hai số dương, a ≠ 1 sao cho \(\log _ab = \sqrt 3 \). Hãy tính \({\log _{a\sqrt b }}{{\root 3 \of a } \over {\sqrt {{b^3}} }}\)
Phương pháp giải:
Sử dụng các công thức:
\(\begin{array}{l}
{\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\\
{\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c
\end{array}\)
\(\begin{array}{l}
{\log _a}\dfrac{b}{c} = {\log _a}b - {\log _a}c\\
{\log _a}{b^n} = n{\log _a}b
\end{array}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& {\log _{a\sqrt b }}{{\root 3 \of a } \over {\sqrt {{b^3}} }} \cr &= {{{{\log }_a}{{\root 3 \of a } \over {\sqrt {{b^3}} }}} \over {{{\log }_a}a\sqrt b }} = {{{{\log }_a}\root 3 \of a - {{\log }_a}\sqrt {{b^3}} } \over {{{\log }_a}a + {{\log }_a}\sqrt b }} \cr
& = \frac{{{{\log }_a}{a^{\frac{1}{3}}} - {{\log }_a}{b^{\frac{3}{2}}}}}{{1 + {{\log }_a}{b^{\frac{1}{2}}}}}\cr &= {{{1 \over 3} - {3 \over 2}{{\log }_a}b} \over {1 + {1 \over 2}{{\log }_a}b}} = {{{1 \over 3} - {3 \over 2}\sqrt 3 } \over {1 + {1 \over 2}\sqrt 3 }} \cr
& = {{2 - 9\sqrt 3 } \over {6 + 3\sqrt 3 }} \cr} \)
Bài 41. Vấn đề sử dụng hợp lí và cải tạo tự nhiên ở Đồng bằng sông Cửu Long
Tải 10 đề kiểm tra 45 phút - Chương 4 – Hóa học 12
CHƯƠNG VIII. SƠ LƯỢC VỀ THUYẾT TƯƠNG ĐỐI HẸP
Bài 19. Thực hành: Vẽ biểu đồ và phân tích sự phân hóa về thu nhập bình quân theo đầu người giữa các vùng
Unit 1. Home Life