Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho ABC là tam giác cân có \(AB = AC = A,\widehat {BAC} = {120^0}\). Điểm S thay đổi trong không gian nhưng luôn ở về một phía của mặt phẳng (ABC) và \(AS = a,\widehat {SAB} = {60^0}\).
a) Gọi H là hình chiếu của điểm S trên mặt phẳng (ABC). Chứng minh rằng H thuộc đường thẳng cố định và S thuộc đường tròn cố định, tính bán kính đường tròn đó.
b) Chứng minh rằng khi độ dài SH đạt giá trị lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó hãy tính độ dài SC.
c) Khi SBC là tam giác vuông tại S, hãy tính góc giữa hai đường thẳng SA với AC và khoảng cách từ A đến mặt phẳng (SBC).
Lời giải chi tiết
a) Vì \(AB = a,SA = a,\widehat {SAB} = {60^0}\) nên SAB là tam giác đều, từ đó điểm S thuộc mặt phẳng trung trực (α) của AB và mặt phẳng (α) cố định, ngoài ra \((\alpha ) \bot \left( {ABC} \right)\). Kí hiệu \(\Delta = \left( \alpha \right) \cap \left( {ABC} \right)\) thì ∆ cố định.
Do H là hình chiếu của S trên (ABC) nên H thuộc ∆.
Vậy hình chiếu của S trên mặt phẳng (ABC) thuộc đường thẳng ∆ cố định nói trên.
Gọi I là trung điểm của AB ta có \(SI = {{a\sqrt 3 } \over 2}\), như vậy, điểm S thuộc đường tròn tâm I, bán kính \({{a\sqrt 3 } \over 2}\), trong mặt phẳng (α) nói trên, tức là điểm S thuộc đường tròn cố định.
b) Ta có \(SH \le SI = {{a\sqrt 3 } \over 2}\). Như vậy giá trị lớn nhất của SH bằng \({{a\sqrt 3 } \over 2}\) khi H trùng với điểm I.
Do \(SI \subset \left( {SAB} \right)\) và \(I \equiv H,SH \bot \left( {ABC} \right)\) nên \(\left( {SAB} \right) \bot \left( {ABC} \right)\) khi SH đạt giá trị lớn nhất
Khi đó \(S{C^2} = C{I^2} + S{I^2} = {\left( {{{a\sqrt 3 } \over 2}} \right)^2} + C{I^2}\)
Mặt khác
\(\eqalign{ & C{I^2} = C{A^2} + A{I^2} - 2{\rm{A}}C.AI.\cos {120^0} \cr & = {a^2} + {{{a^2}} \over 4} + 2a.{a \over 2}.{1 \over 2} = {{7{a^2}} \over 4} \cr} \)
Từ đó \(S{C^2} = {{3{{\rm{a}}^2}} \over 4} + {{7{{\rm{a}}^2}} \over 4} = {{10{a^2}} \over 4}\)
hay \(SC = {{a\sqrt {10} } \over 2}\)
c) - Khi SBC là tam giác vuông tại điểm S thì hình chiếu của điểm A trên mp(SBC) là trung điểm K của BC.
Thật vậy, ta có \(AS = AC = AB\) nên \(K{\rm{S}} = KC = KB\) .
Do đó, AK là khoảng cách từ điểm A đến mp(SBC).
Dễ thấy \(AK = AC\cos {60^0} = {a \over 2}\)
- Vì \(BC = a\sqrt 3 ,SB = a\) nên \(SC = a\sqrt 2 \)
Mặt khác \(SA = AC = a\) nên \(S{C^2} = A{S^2} + A{C^2}\), tức là \(\widehat {SAC} = {90^0}\)
Như vậy, góc giữa hai đường thẳng SA và AC bằng 90°.
Chủ đề 4: Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước Cách mạng tháng Tám năm 1945)
Chuyên đề 3: Dầu mỏ và chế biến dầu mỏ
Unit 7: Healthy lifestyle
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
Bài 11: Tiết 3: Hiệp hội các nước Đông Nam Á (ASEAN) - Tập bản đồ Địa lí 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11