PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 10 - Bài 5 - Chương 3 - Hình học 9

Đề bài

Cho đường tròn (O; R) đường kính BC. Lấy A là điểm chính giữa của cung BC. D là điểm di động trên cung AC, AD cắt BC tại E. Xác định vị trí điểm D để \(2AD + AE\) nhỏ nhất.

Phương pháp giải - Xem chi tiết

Sử dụng:

+Số đo góc có đỉnh bên ngoài đường tròn

+Số đo góc nội tiếp bằng nửa cung bị chắn          

+ Tam giác đồng dạng

+ Định lý Py-ta go

+BĐT Cô-si cho 2 số dương

Lời giải chi tiết

Ta có :

\(\widehat {AEC} = \dfrac{{sd\overparen{AB} - sd\overparen{CD}} }{ 2} \)\(\,= \dfrac{{sd\overparen{AC} - sd\overparen{CD}}}{ 2} = \dfrac{{sd\overparen{AD}} }{ 2}\)  ( vì \(\overparen{AB} = \overparen{AC}\) )

Lại có \(\widehat {ACD} = \dfrac{{sd\overparen{AD}}}{2} \Rightarrow \widehat {AEC} = \widehat {ACD}\)

\( \Rightarrow  ∆ACD\) và \(∆AEC\) đồng dạng (g.g)

\( \Rightarrow \dfrac{{AD} }{ {AC}} =\dfrac {{AC} }{{AE}} \Rightarrow A{C^2} = AD.AE\)

\(∆ABC\) vuông cân ( chắn nửa đường tròn) có \(BC = 2R.\)

Đặt \(AB = AC = x.\)

Theo định lí Py-ta-go:

\(\eqalign{
& {x^2} + {x^2} = {\left( {2R} \right)^2} \Rightarrow 2{x^2} = 4{R^2} \cr 
& \Rightarrow {x^2} = 2{R^2} \Rightarrow x = R\sqrt 2 \cr} \)

Vậy \(AB = AC = R\sqrt 2 \)

\( \Rightarrow {\left( {R\sqrt 2 } \right)^2} = AD.AE \)

\(\Rightarrow AD.AE = 2{R^2}.\)

Áp dụng bất đẳng thức Côsi cho hai số dương, ta có :

\(2AD + AE \ge 2\sqrt {2AD.AE} \)

\(2AD + AE \ge 4R\)

Dấu “ = ” xảy ra \( \Leftrightarrow  2AD  = AE = 2R\)

Do đó khi D thuộc cung AC sao cho \(AD = R \) thì \(2AD + AE\) nhỏ nhất.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved