PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 9 - Bài 9, 10 - Chương 1 - Hình học 8.

Đề bài

Cho tam giác ABC cân tại A, các điểm M, N theo thứ tự di động trên các cạnh AB và AC sao cho AM = CN. Hãy tìm tập hợp các trung điểm I của MN.

Phương pháp giải - Xem chi tiết

Sử dụng:  

Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành

Các điểm cách đường thẳng \(b\) một khoảng bằng \(h\) nằm trên hai đường thẳng song song với \(b\) và cách \(b\) một khoảng bằng \(h.\)

Lời giải chi tiết

 

Kẻ \(NP//AB\) ta có:

\(\widehat {NPC} = \widehat B\) (đồng vị) mà \(\widehat B = \widehat C\left( {gt} \right)\)

\( \Rightarrow \widehat {NPC} = \widehat C\) hay \(\Delta NPC\) cân

\( \Rightarrow NP = NC\) mà NC = MA (gt) \( \Rightarrow NP = MA\) và \(NP// MA\)

Do đó tứ giác ANPM là hình bình hành có I là trung điểm của MN

\( \Rightarrow I\) là trung điểm của AP.

Kẻ IH và AK cùng vuông góc với BC ta có IH là đường trung bình của \(\Delta AKP\) nên \({\rm{IH}} = \dfrac{1 }{2}AK\) (không đổi)

Vậy tập hợp các trung điểm I của MN khi M, N di động trên AB và AC là đường thẳng song song với BC và cách BC một đoạn bằng \(\dfrac {1}2AK\) hay chính là đường trung bình song song với cạnh BC của tam giác ABC. 

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved