Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho nửa đường tròn (O; R) đường kính AB. Vẽ dây CD sao cho CD //AB và \(CD = R\sqrt 3 \).
a) Tính diện tích hình thang ABDC.
b) Tính thể tích của hình được sinh ra khi quay hình thang ABDC quanh AB.
Phương pháp giải - Xem chi tiết
Công thức tính diện tích hình thang: \(S = \frac{{\left( {a + b} \right).h}}{2}\)
Công thức tính thể tích hình nón : \({V_n} = {1 \over 3}\pi {R^2}h \)
Công thức tính thể tích hình trụ: \({V_t} = \pi {R^2}h\)
(Thể tích của hình sinh ra là :\(V = {V_t} + 2{V_n}\))
Lời giải chi tiết
a) Ta có : \(CD = R\sqrt 3 \left( {gt} \right) \Rightarrow \widehat {COD} = 120^\circ \)
∆COD cân tại O \( \Rightarrow \widehat {{C_1}} = \widehat {{D_1}} = 30^\circ \)
CD // AB (gt) \( \Rightarrow \widehat {{O_1}} = \widehat {{C_1}} = 30^\circ \) (so le trong)
Kẻ CH vuông góc với AB tại H, ta có ∆CHO vuông, có \(\widehat {{O_1}} = 30^\circ \) nên \(CH = CO.\sin 30^\circ = {R \over 2}\)
Vậy \({S_{ABDC}} = {{\left( {AB + CD} \right).CH} \over 2} = {{\left( {2R + R\sqrt 3 } \right).{R \over 2}} \over 2} \)\(\;= {{{R^2}\left( {2 + \sqrt 3 } \right)} \over 4}\).
b) Khi quay hình thang ABDC quanh cạnh đáy AB ta được hình sinh ra gồm một hình trụ có bán kính đáy là \(CH = {R \over 2}\), chiều cao \(CD = R\sqrt 3 \) và hai hình nón bằng nhau có bán kính đáy là \(CH = {R \over 2}\) và chiều cao AH.
Trong tam giác vuông CHO, ta có :
\(HO = \sqrt {C{O^2} - C{H^2}} = \sqrt {{R^2} - {{\left( {{R \over 2}} \right)}^2}} \)\(\;= {{R\sqrt 3 } \over 2}\)
\( \Rightarrow AH = AO - HO = R - {{R\sqrt 3 } \over 2} \)\(\;= {{R\left( {2 - \sqrt 3 } \right)} \over 2}\)
Vậy ta gọi Vn là thể tích hình nón.
\({V_n} = {1 \over 3}\pi {R^2}h = {1 \over 3}\pi .C{H^2}.AH\)\(\; = {1 \over 3}\pi {\left( {{R \over 2}} \right)^2}.{{R\left( {2 - \sqrt 3 } \right)} \over 2} = {{\pi {R^3}\left( {2 - \sqrt 3 } \right)} \over {24}}\)
Do đó hai hình tròn bằng nhau có thể tích là : \(2{V_n} = {{\pi {R^3}\left( {2 - \sqrt 3 } \right)} \over {12}}\)
Và gọi Vt là thể tích hình trụ :
\({V_t} = \pi {R^2}h = \pi .C{H^2}.CD \)\(\;= \pi {\left( {{R \over 2}} \right)^2}.R\sqrt 3 = {{\pi {R^3}\sqrt 3 } \over 4}\)
Vậy thể tích của hình sinh ra là :
\(V = {V_t} + 2{V_n} = {{\pi {R^3}\sqrt 3 } \over 4} + {{\pi {R^3}\left( {2 - \sqrt 3 } \right)} \over {12}}\)
\(\;\;\;\; = {{3\pi {R^3}\sqrt 3 + 2\pi {R^3} - \pi {R^3}\sqrt 3 } \over {12}} = {{2\pi {R^3}\sqrt 3 + 2\pi {R^3}} \over {12}} \)
\(\;\;\;\;= {{\pi {R^3}\left( {\sqrt 3 + 1} \right)} \over 6}\).
Đề thi vào 10 môn Toán Tiền Giang
Đề thi vào 10 môn Văn Hòa Bình
Đề thi vào 10 môn Văn Điện Biên
Đề thi vào 10 môn Văn Hà Nam
Đề kiểm tra 15 phút - Chương 3 - Sinh 9