Đề kiểm tra học kì 1 Toán 7 - Đề số 3 - Kết nối tri thức

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải

Đề bài

Phần I: Trắc nghiệm (3 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Câu 1: Kết quả của phép tính: là:

     A.               B.                   C.                                    D.     

Câu 2: Số nào dưới đây là số vô tỉ?

     A.                       B.           C.                       D.     

Câu 3: Kim tự tháp Kheops là công trình kiến trúc nổi tiếng thể giới. Để xây dựng được công trình này, người ta phải sử dụng tới hơn 2,5 triệu mét khối đá, với diện tích đáy lên tới 52 198,16 . (Theo khoahoc.tv)

Biết rằng đáy của kim tự tháp Kheops có dạng một hình vuông. Tính độ dài cạnh đáy của kim tự tháp này (làm tròn kết quả đến chữ số thập phân thứ nhất).

     A.                      B.                              C.                           D.

Câu 4: Kết quả của phép tính: là:

     A.                              B.               C.                                  D.     

Câu 5: Tính số đo của góc trong hình vẽ dưới đây:

 

     A. B.     C.      D.

Câu 6: Quan sát hình vẽ sau:

 

Tính số đo của góc , biết .

     A.                       B.                            C.                            D.      

Câu 7: Cho tam giác và tam giác . Cần thêm một điều kiện gì để tam giác và tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông?

     A.                     B.                          C.                         D.                                          

Câu 8: Tỉ lệ phần trăm số học sinh xuất sắc, giỏi, khá, trung bình của một lớp được biểu diễn qua biểu đồ hình quạt tròn sau:

 

Tìm tỉ số phần trăm số học sinh xuất sắc và số hóc inh giỏi của lớp đó, biết rằng số học sinh xuất sắc bằng số học sinh giỏi.

     A. Số học sinh xuất sắc chiếm , số học sinh giỏi chiếm .                   

     B. Số học sinh xuất sắc chiếm , số học sinh giỏi chiếm .                   

     C. Số học sinh xuất sắc chiếm , số học sinh giỏi chiếm .                   

     D. Số học sinh xuất sắc chiếm , số học sinh giỏi chiếm .

Phần II. Tự luận (7 điểm):

Bài 1: (2,0 điểm)

Thực hiện phép tính:

a)                     b)

c)                                                            d)

Bài 2: (2,0 điểm)

Tìm , biết:

a)                                                                  b)

c)                                                    d)

Bài 3: (1,0 điểm) Trong hình vẽ bên dưới có . Biết

 

a) Chứng minh rằng ;

b) Tính số đo của các góc .

c) Gọi lần lượt là tia phân giác của các góc . Chứng minh rằng .

Bài 4: (1,5 điểm) Cho tam giác nhọn, lấy điểm là trung điểm của cạnh , lấy điểm là trung điểm của cạnh . Trên tia đối của tia lấy điểm sao cho . Chứng minh rằng:

a) Hai tam giác bằng nhau;

b) song song với ;

c) .

Bài 5: (0,5 điểm)  Tìm giá trị nhỏ nhất của biểu thức:

 

Lời giải

Phương pháp giải:

Phần I: Trắc nghiệm

 

1.B

2.A

3.C

4.A

5.C

6.A

7.C

8.D

 

Câu 1

Phương pháp:

Sử dụng quy ước: với

Thực hiện phép cộng với số hữu tỉ.

Cách giải:

Chọn B.

Câu 2

Phương pháp:

Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

Cách giải:

Ta có: là số thập phân vô hạn tuần hoàn

không phải là số vô tỉ

là số hữu tỉ.

Do đó, là số vô tỉ.

Chọn A.

Câu 3

Phương pháp:

Gọi độ dài cạnh hình vuông là

Tính căn bậc hai số học của là độ dài cạnh đáy của kim tự tháp cần tìm.

Cách giải:

Gọi độ dài cạnh hình vuông là

Theo giả thiết, ta có:

Vậy độ dài cạnh đáy của kim tự tháp xấp xỉ 228,5m.

Chọn C.

Câu 4

Phương pháp:

Vận dụng kiến thức giá trị tuyệt đối của một số thực:

Cách giải:

Ta có:

nên do đó,

Suy ra

Do đó,

Ta có:

       

Chọn A.

Câu 5

Phương pháp:

Áp dụng định lý góc ngoài của tam giác: góc ngoài của tam giác bằng tổng hai góc trong không kề với nó, tính số đo của .

Áp dụng định lý tổng ba góc trong một tam giác, tính số đo của

Cách giải:

*Tam giác là góc ngoài tại đỉnh , ta có:

(góc ngoài của tam giác bằng tổng hai góc trong không kề với nó)

*Xét tam giác có: (định lý tổng ba góc trong một tam giác)

Vậy

Chọn C.

Câu 6

Phương pháp:

Vận dụng định lí: Nếu ba cạnh của tam giác bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Cách giải:

Xét có:

(giả thiết)

(giả thiết)

là cạnh chung

Suy ra

Do đó, (hai góc tương ứng)

nên

Chọn A.

Câu 7

Phương pháp:

Áp dụng định lý: Nếu cạnh huyền và một cạnh góc vuông của tam giác này bằng cạnh huyền và một cạnh của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Cách giải:

Hai tam giác lầm lượt là hai cạnh góc vuông của hai tam giác nên để hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông thì ta cần thêm hai cạnh huyền bằng nhau là .

Chọn C.

Câu 8

Phương pháp:

Đọc và phân tích dữ liệu của biểu đồ hình quạt tròn.

Cách giải:

Gọi số phần trăm học sinh xuất sắc là (điều kiện: ). Vì số học sinh xuất sắc bằng số học sinh giỏi nên số phần trăm học sinh giỏi là (điều kiện: ).

Ta có:

Vậy số học sinh xuất sắc chiếm , số học sinh giỏi chiếm .

Chọn D.

 

Phần II. Tự luận:

Bài 1

Phương pháp:

a) Thực hiện các phép toán với số hữu tỉ.

b) Tính căn bậc hai của một số.

Lũy thừa của một số hữu tỉ: .

Thực hiện các phép toán với số hữu tỉ.

c) Thực hiện tính căn bậc hai của một số.

d) Vận dụng kiến thức giá trị tuyệt đối của một số thực:

Thực hiện các phép toán với số hữu tỉ.

Cách giải:

 

a)

 

 

 

b)

 

c)

 

 

 

 

 

d)

 

Bài 2

Phương pháp:

 

a) Giải:

Trường hợp 1: Giải

Trường hợp 2: Giải

b) Giải

Trường hợp 1:

Trường hợp 2:

 

c) Giải:

Trường hợp 1: Giải

Trường hợp 2: Giải

Vận dụng kiến thức giá trị tuyệt đối của một số thực:

d) vận dụng kiến thức giá trị tuyệt đối của một số thực:

Cách giải:

a)

Trường hợp 1:

với mọi nên với mọi

Do đó, với mọi

Vậy không có thỏa mãn .

Trường hợp 2:

Vậy

 

b)

Trường hợp 1:

Vậy

 

Trường hợp 2:

c)

Trường hợp 1:

 

Trường hợp 2:

Vậy

d)

 

 

 

Trường hợp 1:

Trường hợp 2:

Vậy

Bài 3

Phương pháp:

a) Vận dụng tính chất của hai đường thẳng song song.

b) Hai góc kề bù có tổng số đo bằng .

Vận dụng định lý tổng ba góc trong một tam giác.

c) Vận dụng dấu hiệu nhận biết của hai đường thẳng song song.

Cách giải:

 

a) Vì (giả thiết) nên (hai góc so le trong)

(giả thiết) nên (hai góc so le trong)

Suy ra (vì cùng bằng )

b) Vì (giả thiết) nên (hai góc đồng vị)

Ta có là hai góc kề bù nên

Xét tam giác có: (định lí tổng ba góc trong một tam giác)

Vậy .

c) Ta có:

là tia phân giác của (giả thiết) suy ra (tính chất tia phân giác của một góc)

là tia phân giác của (giả thiết) suy ra (tính chất tia phân giác của một góc)

Ta có:

là hai góc kề nhau nên

là hai góc kề nhau nên

mà hai góc này ở vị trí đồng vị nên (dấu hiệu nhận biết hai đường thẳng song song).

Bài 4

Phương pháp:

a) Vận dụng định lý: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp cạnh – góc – cạnh (c.g.c).

b) Vận dụng dấu hiệu nhận biết của hai đường thẳng song song.

c) Vận dụng định lý: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp cạnh – góc – cạnh (c.g.c).

Vận dụng tính chất trung điểm của đoạn thẳng, tính chất bắc cầu.

Cách giải:

 

a) Vì là trung điểm của nên

Xét có:

             (chứng minh trên)

             (hai góc đối đỉnh)

             (giả thiết)

Suy ra

b) Vì (chứng minh a), suy ra (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên

Suy ra (điều phải chứng minh)

c) Vì (chứng minh a), suy ra (hai cạnh tương ứng)

Lại có, là trung điểm của nên

Suy ra, (vì cùng bằng )

(chứng minh b) nên (hai góc so le trong)

Xét có:

             (chứng minh trên)

             (chứng minh trên)

             là cạnh chung

Suy ra (hai cạnh tương ứng)

. Do đó, (điều phải chứng minh)

Bài 5

Phương pháp:

Vận dụng kiến thức lũy thừa của một số và căn bậc hai số học của một số.

Cách giải:

Ta có:

Dấu “=” xảy ra khi và chỉ khi .

Vậy giá trị nhỏ nhất của khi

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn có câu hỏi cần được giải đáp?
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi