Đề bài
Chứng minh rằng các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\).
a) \({1^3} + {2^3} + {3^3} + ... + {n^3} = \frac{{{n^2}{{(n + 1)}^2}}}{4}\)
b) \(1.4 + 2.7 + 3.10 + ... + n(3n + 1) = n{(n + 1)^2}\)
c) \(\frac{1}{{1.3}} + \frac{1}{{3.5}} + \frac{1}{{5.7}} + ... + \frac{1}{{(2n - 1)(2n + 1)}} = \frac{n}{{2n + 1}}\)
Phương pháp giải - Xem chi tiết
Quy nạp: Chứng minh mệnh đề đúng với \(n \ge p\) thì:
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết
a) Ta chứng minh bằng quy nạp theo n.
Bước 1: Với \(n = 1\) ta có \({1^3} = \frac{{{1^2}{{(1 + 1)}^2}}}{4}\)
Như vậy đẳng thức đúng cho trường hợp \(n = 1\)
Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:
\({1^3} + {2^3} + {3^3} + ... + {k^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4}\)
Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh
\({1^3} + {2^3} + {3^3} + ... + {k^3} + {(k + 1)^3} = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}\)
Sử dụng giả thiết quy nạp, ta có
\(\begin{array}{l}{1^3} + {2^3} + {3^3} + ... + {k^3} + {(k + 1)^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4} + {(k + 1)^3}\\ = {(k + 1)^2}\left( {\frac{{{k^2}}}{4} + k + 1} \right) = \frac{{{{(k + 1)}^2}({k^2} + 4k + 4)}}{4}\\ = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}\end{array}\)
Vậy đẳng thức đúng với \(n = k + 1\).
Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).
b) Ta chứng minh bằng quy nạp theo n.
Bước 1: Với \(n = 1\) ta có \(1.4 = 1.{(1 + 1)^2}\)
Như vậy đẳng thức đúng cho trường hợp \(n = 1\)
Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:
\(1.4 + 2.7 + 3.10 + ... + k(3k + 1) = k{(k + 1)^2}\)
Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh
\(1.4 + 2.7 + 3.10 + ... + k(3k + 1) + (k + 1)(3(k + 1) + 1) = (k + 1){(k + 2)^2}\)
Sử dụng giả thiết quy nạp, ta có
\(\begin{array}{l}1.4 + 2.7 + 3.10 + ... + k(3k + 1) + (k + 1)(3(k + 1) + 1)\\ = k{(k + 1)^2} + (k + 1)(3k + 4) = (k + 1)\left[ {k(k + 1) + 3k + 4} \right]\\ = (k + 1)({k^2} + 4k + 4) = (k + 1){(k + 2)^2}\end{array}\)
Vậy đẳng thức đúng với \(n = k + 1\).
Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).
c) Ta chứng minh bằng phương pháp quy nạp
Với \(n = 1\) ta có \({S_1} = \frac{1}{3}\)
Vậy đẳng thức đúng với \(n = 1\)
Giải sử đẳng thức đúng với \(n = k\) tức là ta có \({S_k} = \frac{k}{{2k + 1}}\)
Ta chứng minh đẳng thức đúng với \(n = k + 1\) tức là chứng minh \({S_{k + 1}} = \frac{{k + 1}}{{2(k + 1) + 1}}\)
Thật vậy, ta có
\(\begin{array}{l}{S_{k + 1}} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{(2k - 1)(2k + 1)}} + \frac{1}{{(2k + 1)(2k + 3)}}\\ = \frac{k}{{2k + 1}} + \frac{1}{{(2k + 1)(2k + 3)}} = \frac{{k(2k + 3) + 1}}{{(2k + 1)(2k + 3)}} = \frac{{2{k^2} + 3k + 1}}{{(2k + 1)(2k + 3)}}\\ = \frac{{(k + 1)(2k + 1)}}{{(2k + 1)(2k + 3)}} = \frac{{k + 1}}{{2k + 3}}\end{array}\)
Vậy đẳng thức đúng với mọi số tự nhiên \(n \ge 1\).
Chủ đề 6. Lập kế hoạch tài chính cá nhân
Hiền tài là nguyên khí của quốc gia
Chủ đề 1: Thể hiện phẩm chất tốt đẹp của người học sinh
Phần làm văn
Môn cầu lông
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10