Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Tính căn bậc hai số học của:
a) \(0,01 ;\) b) \(0,04 ;\)
c) \(0,49 ; \) d) \(0,64 ;\)
e) \(0,25; \) f) \(0,81 ;\)
g) \(0,09 ; \) h) \(0,16.\)
LG a
LG a
\(0,01 ;\)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,01} = 0,1\) vì \( 0,1 \ge 0\) và \((0,1)^2=0,01\)
LG b
LG b
\(0,04 ;\)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,04} = 0,2\) vì \(0,2 ≥ 0\) và \((0,2)^2 = 0,04\)
LG c
LG c
\(0,49 ; \)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,64} = 0,8\) vì \(0,8 ≥ 0\) và \((0,8)^2= 0,64\)
LG d
LG d
\(0,64 ;\)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,49} = 0,7\) vì \(0,7 ≥ 0\) và \((0,7)^2 = 0,49\)
LG e
LG e
\(0,25; \)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,25} = 0,5\) vì \(0,5 ≥ 0\) và \((0,5)^2 = 0,25\)
LG f
LG f
\(0,81 ;\)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,81} = 0,9\) vì \(0,9 ≥ 0\) và \((0,9)^2 = 0,81\)
LG g
LG g
\(0,09 ; \)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,09} = 0,3\) vì \(0,3 ≥ 0\) và \((0,3)^2= 0,09\)
LG h
LG h
\(0,16.\)
Phương pháp giải:
Sử dụng định nghĩa: Căn bậc hai số học của số \(a\) không âm là số \(x\) không âm sao cho \(x^2=a\)
Hay \(\sqrt a = x\)\( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
a = {x^2}
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {0,16} = 0,4\) vì \(0,4 ≥ 0\) và \((0,4)^2 = 0,16\)
PHẦN 1. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
CHƯƠNG 3: QUANG HỌC
Bài 29. Vùng Tây Nguyên (tiếp theo)
Đề thi vào 10 môn Văn Bắc Ninh
Bài 20