1. Nội dung câu hỏi
Trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) \({u_n} = 2n + 3\);
b) \({u_n} = - 3n + 1\);
c) \({u_n} = {n^2} + 1\);
d) \({u_n} = \frac{2}{n}\).
2. Phương pháp giải
Sử dụng kiến thức về khái niệm cấp số cộng để tìm dãy số là cấp số cộng: Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó, kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó với một số d không đổi, nghĩa là: \({u_{n + 1}} = {u_n} + d\) với \(n \in \mathbb{N}*\). Số d được gọi là công sai của cấp số cộng.
3. Lời giải chi tiết
a) Ta có: \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) + 3 - 2n - 3 = 2\) nên dãy số \(\left( {{u_n}} \right)\) trên là cấp số cộng.
Cấp số cộng này có số hạng đầu \({u_1} = 5\) và công sai \(d = 2\).
b) Ta có: \({u_{n + 1}} - {u_n} = - 3\left( {n + 1} \right) + 1 - \left( { - 3n + 1} \right) = - 3\) nên dãy số \(\left( {{u_n}} \right)\) trên là cấp số cộng.
Cấp số cộng này có số hạng đầu \({u_1} = - 2\) và công sai \(d = - 3\).
c) Ta có: \({u_{n + 1}} - {u_n} = {\left( {n + 1} \right)^2} + 1 - {n^2} - 1 = 2n + 1\) nên dãy số \(\left( {{u_n}} \right)\) trên không là cấp số cộng.
d) Ta có: \({u_{n + 1}} - {u_n} = \frac{2}{{n + 1}} - \frac{2}{n} = \frac{{2n - 2n - 2}}{{n\left( {n + 1} \right)}} = \frac{{ - 2}}{{n\left( {n + 1} \right)}}\) nên dãy số \(\left( {{u_n}} \right)\) trên không là cấp số cộng.
Chuyên đề 1. Trường hấp dẫn
Chuyên đề 1: Lịch sử nghệ thuật truyền thống Việt Nam
ĐỀ THI HỌC KÌ 2 - ĐỊA LÍ 11
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Tiếp theo)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11