1. Nội dung câu hỏi
Xác định số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 18\\{u_3} + {u_7} = 22\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_9} - {u_4} = 15\\{u_3}.{u_8} = 184\end{array} \right.\);
c) \(\left\{ \begin{array}{l}{u_6} = 8\\u_2^2 + u_4^2 = 16\end{array} \right.\).
2. Phương pháp giải
Sử dụng kiến thức về số hạng tổng quát của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).
3. Lời giải chi tiết
a) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 18\\{u_3} + {u_7} = 22\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 5d = 18\\{u_1} + 2d + {u_1} + 6d = 22\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 5d = 18\\2{u_1} + 8d = 22\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{17}}{3}\\d = \frac{4}{3}\end{array} \right.\)
Vậy số hạng đầu của cấp số cộng là \(\frac{{17}}{3}\) và công sai \(d = \frac{4}{3}\).
b) \(\left\{ \begin{array}{l}{u_9} - {u_4} = 15\\{u_3}.{u_8} = 184\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 8d - {u_1} - 3d = 15\\\left( {{u_1} + 2d} \right).\left( {{u_1} + 7d} \right) = 184\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}d = 3\\\left( {{u_1} + 2.3} \right).\left( {{u_1} + 7.3} \right) = 184\left( 1 \right)\end{array} \right.\)
\(\left( 1 \right) \Leftrightarrow \left( {{u_1} + 6} \right)\left( {{u_1} + 21} \right) = 184\)\( \Leftrightarrow u_1^2 + 27{u_1} - 58 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{u_1} = 2\\{u_1} = - 29\end{array} \right.\)
Vậy số hạng đầu của cấp số cộng là \({u_1} = 2\) hoặc \({u_1} = - 29\) và công sai \(d = 3\).
c) \(\left\{ \begin{array}{l}{u_6} = 8\\u_2^2 + u_4^2 = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 5d = 8\\{\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\{\left( {8 - 5d + d} \right)^2} + {\left( {8 - 5d + 3d} \right)^2} = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\{\left( {8 - 4d} \right)^2} + {\left( {8 - 2d} \right)^2} = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\20{d^2} - 96d + 112 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\\left[ \begin{array}{l}d = 2\\d = \frac{{14}}{5}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{u_1} = - 2\\d = 2\end{array} \right.\\\left\{ \begin{array}{l}{u_1} = - 6\\d = \frac{{14}}{5}\end{array} \right.\end{array} \right.\)
Vậy số hạng đầu của cấp số cộng là \( - 2\) và công sai \(d = 2\) hoặc số hạng đầu của cấp số cộng là \( - 6\) và công sai \(d = \frac{{14}}{5}\).
Ngóng gió đông - Nguyễn Đình Chiểu
Chương 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Chủ đề 3. Điện trường
Unit 5: Illiteracy - Nạn mù chữ
Review 4
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11