Đề bài
Giải phương trình sau
\({\sin}^2 x-{\cos}^2 x=\cos 4x\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức hạ bậc \({\cos}^2 x-{\sin}^2 x=\cos 2x\).
Sử dụng công thức biến đổi tổng thành tích \(\cos a + \cos b\)
\(= 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)\).
Lời giải chi tiết
Ta có: \({\sin}^2x-{\cos}^2x=\cos 4x\)
\(\Leftrightarrow -\cos 2x=\cos 4x\)
\(\Leftrightarrow 2\cos 3x\cos x=0\)
\(\Leftrightarrow \left[ \begin{array}{l} \cos 3x = 0\\\cos x= 0\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l} 3x = \dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\\x= \dfrac{\pi}{2}+k\pi,\in\mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi}{6}+k\dfrac{\pi}{3},k\in\mathbb{Z}\\ x= \dfrac{\pi}{2}+k\pi,\in\mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\dfrac{\pi}{3},k\in\mathbb{Z}\)
Vậy phương trình có nghiệm là \(x=\dfrac{\pi}{6}+k\dfrac{\pi}{3},k\in\mathbb{Z}\)
Bài 9: Tiết 2: Các ngành kinh tế và các vùng kinh tế Nhật Bản - Tập bản đồ Địa lí 11
CHƯƠNG IV- TỪ TRƯỜNG
Unit 2: Express Yourself
CHƯƠNG VII: MẮT VÀ CÁC DỤNG CỤ QUANG
Unit 6: World Heritages
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11