Bài 2 trang 168 SBT hình học 12

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60o

a) Thể tích hình chóp S.CDNM

b) Tính khoảng cách giữa DM và SC.

Lời giải chi tiết

 

 

 

a) Xét các hình vuông ABCD.

Ta có hai tam giác vuông ADM và DCN bằng nhau (h-c-g-v) nên ∠DMA = ∠CND.

Mà CND^+CNA^=1800 DMA^+CNA^=1800

 Tứ giác ANHM nội tiếp

MAN^+MHN^=1800 MHN^=1800MAN^ =1800900=900

Từ đó suy ra DM ⊥ CN. Trong tam giác vuông CDN ta có:

CD2 = CH.CN ⇒ CH = 2a/√5

Suy ra SH = CH.tan60o =2a5.3=2a35

SCDNM = SABCD - SAMN - SBCM ==a212.a2.a212a.a2=5a28

VS.CDNM==13SCDNM.SH=13.5a28.2a35 ==a31512

b) Gọi I là chân đường vuông góc kẻ từ H lên SC

Vì MD ⊥ (SCN), MD ∩ (SCN) = H nên

d(MD, SC) = d(H, SC) = HI = HC.sin60o =a155.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved